Opendata, web and dolomites

CRORTET SIGNED

Experimental characterization of turbulent pressure fluctuations on realistic Contra-Rotating Open Rotor (CROR) 2D airfoil in representative high subsonic Mach number

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CRORTET" data sheet

The following table provides information about the project.

Coordinator
STICHTING NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM 

Organization address
address: Anthony Fokkerweg 2
city: AMSTERDAM
postcode: 1059CM
website: www.nlr.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 460˙500 €
 EC max contribution 460˙500 € (100%)
 Programme 1. H2020-EU.3.4.5.4. (ITD Airframe)
 Code Call H2020-CS2-CFP02-2015-01
 Funding Scheme CS2-IA
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2018-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM NL (AMSTERDAM) coordinator 390˙500.00
2    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) participant 70˙000.00

Map

 Project objective

Prediction of Open Rotor broadband noise requires boundary layer statistics that, for the high subsonic relative Mach number encountered by the blades, are not available today in literature. The CRORTET project, fills this lack by preparing and executing a high fidelity wind tunnel test, analyse the results and deliver a well documented data base with test data. One of the major sources of broadband noise is due to the deformation and interaction of the turbulent vortices in the rotor blade boundary layer when they pass over the blade trailing edge. Existing semi-analytical models for the prediction of broadband traling edge noise emission require turbulence statistics of the surface pressures close to the trailing edge, namely: the fluctuation spectrum, convection velocity and spanwise correlation length of the surface pressures. Existing experimental data were made on flat plates, NACA0012 or similar airfoils at low Mach number, No experimental data nor high fidelity simulations are available for the high subsonic Mach conditions encountered by the rotor blades operating in approach (0.5), take-off (0.7) and cruise (0.9) conditions. Applying semi-analytical methods to these conditions, using inappropriate surface pressure statistics shows a shortfall in comparison to open rotor experimental data. It is thought that this is mainly due to the use of low Mach number data on profiles too much different from CROR blade profiles. Therefore, in the CRORTET project two airfoils will be specifically designed, manufactured and tested in the DNW-TWG wind tunnel at full scale Reynolds number (representative for a front row CROR blade at 75% blade span) and in the appropriate Ma range. One of those airfoils is a reference airfoil (e.g. a NACA0012 or similar), the other airfoil will be specifically designed to represent a CROR blade. The main goal of the project is to create a high quality data base for future high fidelity numerical computation of broadband noise emission.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CRORTET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CRORTET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.4.)

WELTMAP (2019)

Wheel Lightweight Manufacturing Process

Read More  

TREAL (2019)

Thermoplastic material allowable generation using a reliability-based virtual modeling platform

Read More  

ELADINE (2019)

Evaluation of LAminate composite Distortion by an Integrated Numerical-Experimental approach

Read More