SPEED

Single Pore Engineering for Membrane Development

 Coordinatore UNIVERSITY OF NEWCASTLE UPON TYNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙080˙000 €
 EC contributo 2˙080˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-02-01   -   2018-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF NEWCASTLE UPON TYNE

 Organization address address: Kensington Terrace 6
city: NEWCASTLE UPON TYNE
postcode: NE1 7RU

contact info
Titolo: Mrs.
Nome: Deborah
Cognome: Grieves
Email: send email
Telefono: +44 191 222 6131

UK (NEWCASTLE UPON TYNE) hostInstitution 2˙080˙000.00
2    UNIVERSITY OF NEWCASTLE UPON TYNE

 Organization address address: Kensington Terrace 6
city: NEWCASTLE UPON TYNE
postcode: NE1 7RU

contact info
Titolo: Prof.
Nome: Ian
Cognome: Metcalfe
Email: send email
Telefono: +44 1912816035
Fax: +44 1912225292

UK (NEWCASTLE UPON TYNE) hostInstitution 2˙080˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fluxes    temperature    single    model    entirely    efficient    membrane    membranes    real    materials    carbon    difficult    kinetics    permeation   

 Obiettivo del progetto (Objective)

'Mankind needs to innovate to deliver more efficient, environmentally-friendly and increasingly intensified processes. The development of highly selective, high temperature, inorganic membranes is critical for the introduction of the novel membrane processes that will promote the transition to a low carbon economy and result in cleaner, more efficient and safer chemical conversions. However, high temperature membranes are difficult to study because of problems associated with sealing and determining the relatively low fluxes that are present in most laboratory systems (fluxes are conventionally determined by gas analysis of the permeate stream). Characterisation is difficult because of complex membrane microstructures.

I will avoid these problems by adopting an entirely new approach to membrane materials selection and kinetic testing through a pioneering study of permeation in single pores of model membranes. Firstly, model single pore systems will be designed and fabricated; appropriate micro-analytical techniques to follow permeation will be developed. Secondly, these model systems will be used to screen novel combinations of materials for hybrid membranes and to determine kinetics with a degree of control not previously available in this field. Thirdly, I will use our improved understanding of membrane kinetics to guide real membrane design and fabrication. Real membrane performance will be compared to model predictions and I will investigate how the new membranes can impact on process design.

If successful, an entirely new approach to membrane science will be developed and demonstrated. New membranes will be developed facilitating the adoption of new processes addressing timely challenges such as the production of high purity hydrogen from low-grade reducing gases, carbon dioxide capture and the removal of oxides of nitrogen from oxygen-containing exhaust streams.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

COMBOS (2010)

Collective phenomena in quantum and classical many body systems

Read More  

MIRTURN (2010)

Mechanisms of microRNA biogenesis and turnover

Read More  

DECORE (2008)

Deep Earth Chemistry of the Core

Read More