MULTIFLOW

Multiscale dynamics of turbulent flows

 Coordinatore UNIVERSIDAD POLITECNICA DE MADRID 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Spain [ES]
 Totale costo 2˙200˙000 €
 EC contributo 2˙200˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-02-01   -   2016-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSIDAD POLITECNICA DE MADRID

 Organization address address: Calle Ramiro de Maeztu 7
city: MADRID
postcode: 28040

contact info
Titolo: Prof.
Nome: Gonzalo
Cognome: Leon
Email: send email
Telefono: 34913366048
Fax: 34913365974

ES (MADRID) hostInstitution 2˙200˙000.00
2    UNIVERSIDAD POLITECNICA DE MADRID

 Organization address address: Calle Ramiro de Maeztu 7
city: MADRID
postcode: 28040

contact info
Titolo: Prof.
Nome: Javier
Cognome: Jiménez Sendin
Email: send email
Fax: +34 91 3363295

ES (MADRID) hostInstitution 2˙200˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

years    few    past    fundamental    data    turbulence    time    energy    flows    transfer    multiscale    shear    models   

 Obiettivo del progetto (Objective)

'Turbulence is a fundamental unsolved problem, at whose core are the multiscale processes that transfer, for example, energy across the inertial range of scales, or momentum across wall-bounded shear flows. Turbulence is also key to applications, from industrial design and energy generation to climate dynamics, where the worst uncertainties are often due to its modelling. Its practical computation and control have been hindered by empirical models and boundary conditions, in large part because of insufficient understanding of the multiscale transfer just mentioned. Direct simulations, without approximation, are expensive, but the past few years have seen the appearance of larger computers and reasonably-priced disks that allow, for the first time, the compilation of time-resolved data sets of canonical turbulent flows with high enough Reynolds numbers to be truly multiscale, as well as the possibility of performing conceptual experiments on them. The premise of this proposal is that those new capabilities should allow us to elucidate, once and for all, the physics underlying the multiscale transfer processes in turbulence in the next five years, especially in shear flows near walls. That will allow the formulation of more realistic engineering models, but the immediate goal of the proposal is to answer the fundamental questions that have resisted two centuries of attack by physicists and engineers. An important part of the work will involve adapting simulation codes to the new computer architectures expected in the next few years. Neither large-scale computing nor data mining are trivial activities, but our group has specialised in both during the past 20 years, particularly for the study of turbulence.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MEMFOLD (2009)

New approaches to the study of membrane-protein folding in vivo and in silico

Read More  

MEIOSIGHT (2012)

MEIOtic inSIGHT: Deciphering the engine of heredity

Read More  

UNIQDS (2013)

Universal Framework for Charge Transport in Quantum Dot Systems

Read More