MICROBIALSPM

Microbial recognition and adhesion on the nano scale using BIO-SPM

 Coordinatore UNIVERSITAT LINZ 

 Organization address address: ALTENBERGERSTRASSE 69
city: LINZ
postcode: 4040

contact info
Titolo: Prof.
Nome: Peter
Cognome: Hinterdorfer
Email: send email
Telefono: 4373220000000
Fax: 4373220000000

 Nazionalità Coordinatore Austria [AT]
 Totale costo 175˙844 €
 EC contributo 175˙844 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-08-01   -   2013-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAT LINZ

 Organization address address: ALTENBERGERSTRASSE 69
city: LINZ
postcode: 4040

contact info
Titolo: Prof.
Nome: Peter
Cognome: Hinterdorfer
Email: send email
Telefono: 4373220000000
Fax: 4373220000000

AT (LINZ) coordinator 175˙844.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

smm    topography    bio    pico    newton    force    bacteria    environment    scanning    kelvin    imaging    nanoscale    nano    live    fundamental    resolution    adapting    studied    interaction    biochemical    microbial    surfaces    spm    drugs    infection    probe    recognition    successfully    techniques    coli    bacterial    physical    biological    sensors    nanometer    years    biotic    mechanisms    local    escherichia    kpfm    interactions    charge    pathogen    organisms    environmental    surface    detection    microwave    spectroscopy    living    abiotic    microscopy   

 Obiettivo del progetto (Objective)

'Our main goal in this proposal is the elucidation of fundamental interaction processes between microbial systems and a living organism. This research will directly lead us to a so far missing understanding of the detailed mechanism of bacterial pathogen infection in vivo. The newly gained knowledge will be highly important for the development of antibacterial drugs against pathogen-related diseases and for the ultra-sensitive detection of pathogens using bio-sensors.

Bacteria have existed for several billion years by adapting to changes in their environment. Understanding how bacteria acquire new functions in response to environmental changes will advance our fundamental knowledge thereby enhancing our ability to design and tailor changes in biological structure. We will investigate local physical and biochemical variation in the bacterial outer membrane of live bacteria, at nanometer resolution, as bacteria interact with both abiotic and biotic surfaces. For these studies we will use Escherichia coli (E. coli) primarily because it has been well studied and the genome sequence has been determined.

Biological scanning probe microscopy (SPM) is the tool of choice for these studies because it is the only instrument that allows studying living microbial organisms in their natural environment at the nano-meter scale resolution. A broad range of scanning microscopic techniques including Force spectroscopy, Topography and recognition imaging (TREC), Kelvin probe force microscopy (KPFM), and Scanning microwave microscopy (SMM) will be utilized in these studies for looking into the dynamics of individual protein domains, local binding sites, and locations of charge centers of complex proteins at sub-nanometer, pico-Newton, and nano-Ampere resolution.'

Introduzione (Teaser)

Bacteria have thrived for billions of years by successfully adapting to a changing environment. Understanding the molecular mechanisms in play during adaptation and infection of living organisms could be the key to finding effective sensors, drugs and solutions.

Descrizione progetto (Article)

The EU-funded project 'Microbial recognition and adhesion on the nano scale using BIO-SPM' (MICROBIALSPM) has investigated the interaction between live Escherichia coli (E. coli) and its biotic (living) and abiotic (non-living) environment.

Scanning probe microscopy (SPM) has put on nanoscale view the physical and biochemical changes experienced by live E. coli. SPM techniques included force spectroscopy, topography and recognition imaging, Kelvin probe force microscopy (KPFM), and scanning microwave microscopy (SMM). The SPM tips were loaded with biologically active molecules to improve specificity at nanometre and pico-Newton resolution.

Researchers studied the changes in bacteria and its surface structures when coming into contact with, and colonising biotic and abiotic surfaces in different environmental conditions. Under different growing culture conditions, variations in bacterial morphology and function were studied through changes in surface charge distribution using techniques like KPFM and SMM. The scientists mapped both chemical and mechanical surface properties. Researchers therefore successfully elucidated the underlying mechanisms and the biomolecular interactions involved in these interactions.

SPM technologies developed during this project provide unprecedented resolution and sensitivity for imaging live cells or systems in dynamic conditions. Such nanoscale electrical detection methods for biological systems could be exploited for development of miniaturised biosensors and diagnostic devices.

Project activities have also laid the groundwork for future studies on disease pathogenesis and drug efficacy. This has significant implications for the material science, surface chemistry, biotechnology and pharmaceutical industries.

Altri progetti dello stesso programma (FP7-PEOPLE)

INTERACT (2010)

Integrated tactile surface actuator design

Read More  

IOF FLAVOR (2013)

CONTROL OF AROMA COMPOUNDS IN STRAWBERRY

Read More  

PREPARING TO SEE (2014)

Neural mechanisms of top-down preparation and their influence on visual awareness of real-world objects

Read More