Opendata, web and dolomites

DexROV

Dexterous ROV: effective dexterous ROV operations in presence of communication latencies.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DexROV project word cloud

Explore the words cloud of the DexROV project. It provides you a very rough idea of what is the project "DexROV" about.

distance    exoskeleton    consisting    sensors    cm    execute    accommodate    cutting    accuracy    baseline    realistic    mitigate    manned    industry    interfaces    risks    reduce    cognitive    double    off    delocalized    latencies    simulation    crew    campaigns    course    underwater    shore    wish    culminating    observe    force    location    setup    physically    despite    manipulation    costly    tests    advise    simulated    offshore    trial    operator    data    acquired    sonar    environment    dexrov    operations    autonomously    burden    feedback    communication    oil    deep    vision    evaluation    effectors    divers    series    manpower    center    turn    onshore    3d    navigator    extra    staffing    skid    dexterous    intendant    pair    equipped    primitives    requests    time    operators    models    sensing    online    possibly    operation    rov    provisioned    demanding    delays    modular    engine    arm    actual    efficient    customers    manipulators    setups    outcomes    strategy   

Project "DexROV" data sheet

The following table provides information about the project.

Coordinator
SPACE APPLICATIONS SERVICES NV 

Organization address
address: LEUVENSESTEENWEG 325
city: ZAVENTEM
postcode: 1932
website: www.spaceapplications.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website http://www.dexrov.com/
 Total cost 5˙336˙006 €
 EC max contribution 4˙631˙182 € (87%)
 Programme 1. H2020-EU.3.2. (SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy)
 Code Call H2020-BG-2014-2
 Funding Scheme RIA
 Starting year 2015
 Duration (year-month-day) from 2015-03-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SPACE APPLICATIONS SERVICES NV BE (ZAVENTEM) coordinator 1˙438˙437.00
2    GRAAL TECH SRL IT (GENOVA) participant 997˙500.00
3    COMPAGNIE MARITIME D EXPERTISES SA FR (MARSEILLE) participant 787˙125.00
4    JACOBS UNIVERSITY BREMEN GGMBH DE (BREMEN) participant 652˙925.00
5    UNIVERSITA DEGLI STUDI DI GENOVA IT (GENOVA) participant 636˙875.00
6    EJR-QUARTZ BV NL (LEIDEN) participant 118˙320.00
7    FONDATION DE L'INSTITUT DE RECHERCHE IDIAP CH (MARTIGNY) participant 0.00

Map

 Project objective

Underwater operations (e.g. oil industry) are demanding and costly activities for which ROV based setups are often deployed in addition to deep divers – contributing to operations risks and costs cutting. However the operation of a ROV requires significant off-shore dedicated manpower – such a setup typically requires a crew consisting of: (1) an intendant, (2) an operator, and (3) a navigator. This is a baseline, and extra staffing is often provisioned. Furthermore, customers representatives often wish to be physically present at the off-shore location in order to advise on, or to observe the course of the operations. Associated costs are high. In order to reduce the burden of operations, DexROV will work out more cost effective and time efficient ROV operations, where manned support is in a large extent delocalized onshore (i.e. from a ROV control center), possibly at a large distance from the actual operations - thus with latencies in the communication. As a main strategy to mitigate them, DexROV will develop a real time simulation environment to accommodate operators’ requests on the onshore side with no delays. The simulated environment will exploit cm accuracy 3D models of the environment built online by the ROV, using data acquired with underwater sensors (3D sonar and vision based). A dedicated cognitive engine will analyse user’s control requests as done in the simulated environment, and will turn them into primitives that the ROV can execute autonomously in the real environment, despite the communication latencies. Effective user interfaces will be developed for dexterous manipulation, including a double advanced arm and hand force feedback exoskeleton. The ROV will be equipped with a pair of new force sensing capable manipulators and dexterous end-effectors: they will be integrated within a modular skid. The outcomes of the project will be integrated and evaluated in a series of tests and evaluation campaigns, culminating with a realistic offshore trial.

 Deliverables

List of deliverables.
Report on integration step 3 and 3rd evaluation campaign Documents, reports 2020-01-21 09:53:25
Professional short movie of project achievements Websites, patent fillings, videos etc. 2020-01-21 09:53:25
Customer website Websites, patent fillings, videos etc. 2020-01-21 09:53:25
Cognitive engine Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Communication and dissemination package for Y4 Websites, patent fillings, videos etc. 2020-01-21 09:53:24
Report on integration step 2 and 2nd evaluation campaign Documents, reports 2020-01-21 09:53:24
Ground truth simulation setup: final release Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Haptic arms and hands exoskeletons Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Coordinated ROV+arms strategy, and grasping strategy Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Operational Satellite communications system Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Movement and feedback primitives software Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Dexterous grippers developed and tested Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Manipulation arm integrated in the skid and ready to be mounted on the ROV Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Dexterous arms developed and tested Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Advanced Underwater Localization & Perception Framework Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Autonomous arm primitives Demonstrators, pilots, prototypes 2020-01-21 09:53:23
Communication and dissemination package for Y2 Websites, patent fillings, videos etc. 2020-01-21 09:53:24
Simulation environment main release Demonstrators, pilots, prototypes 2020-01-21 09:53:23
Visual user interface Demonstrators, pilots, prototypes 2020-01-21 09:53:23
Interface Control Document Documents, reports 2020-01-21 09:53:24
Main control center infrastructures Demonstrators, pilots, prototypes 2020-01-21 09:53:23
Reference DexROV use cases Documents, reports 2020-01-21 09:53:24
Ground truth simulation setup: intermediate release Demonstrators, pilots, prototypes 2020-01-21 09:53:23
Ground truth simulation setup: initial release Demonstrators, pilots, prototypes 2020-01-21 09:53:23
System integration and evaluation plan Documents, reports 2020-01-21 09:53:23
Representative test mockup Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Early Underwater Localization & Perception Framework Demonstrators, pilots, prototypes 2020-01-21 09:53:24
Communication and dissemination package for Y3 Websites, patent fillings, videos etc. 2020-01-21 09:53:24
Protocols for offline training and preparation of a mission Demonstrators, pilots, prototypes 2020-01-21 09:53:23
Report on integration step 1 and 1st evaluation campaign Documents, reports 2020-01-21 09:53:24
Project web site and media channels Websites, patent fillings, videos etc. 2020-01-21 09:53:24
System requirements elicitation and operational concept Documents, reports 2020-01-21 09:53:24
Functional and physical architecture Documents, reports 2020-01-21 09:53:24
Autonomous navigation primitives Demonstrators, pilots, prototypes 2020-01-21 09:53:23
Intermediary Underwater Localization & Perception Framework Demonstrators, pilots, prototypes 2020-01-21 09:53:23

Take a look to the deliverables list in detail:  detailed list of DexROV deliverables.

 Publications

year authors and title journal last update
List of publications.
2016 Jeremi Gancet, Peter Weiss, Gianluca Antonelli, Max Folkert Pfingsthorn, Sylvain Calinon, Alessio Turetta, Cees Walen, Diego Urbina, Shashank Govindaraj, Pierre Letier, Xavier Martinez, Joseph Salini, Bertrand Chemisky, Giovanni Indiveri, Giuseppe Casalino, Paolo Di Lillo, Enrico Simetti, Daniel De Palma, Andreas Birk, Tobias Fromm, Christian Mueller, Ajay Tanwani, Ioannis Havoutis, Andrea Caffaz, Lisa Guilpain
Dexterous Undersea Interventions with Far Distance Onshore Supervision: the DexROV Project
published pages: 414-419, ISSN: 2405-8963, DOI: 10.1016/j.ifacol.2016.10.439
IFAC-PapersOnLine 49/23 2020-01-21
2018 Martijn J. A. Zeestraten, Ioannis Havoutis, Sylvain Calinon
Programming by Demonstration for Shared Control With an Application in Teleoperation
published pages: 1848-1855, ISSN: 2377-3766, DOI: 10.1109/LRA.2018.2805105
IEEE Robotics and Automation Letters 3/3 2020-01-21
2018 Sylvain Calinon
Robot Learning with Task-Parameterized Generative Models
published pages: 111-126, ISSN: , DOI: 10.1007/978-3-319-60916-4_7
2020-01-21
2017 Enrico Simetti, Giuseppe Casalino
Manipulation and Transportation With Cooperative Underwater Vehicle Manipulator Systems
published pages: 782-799, ISSN: 0364-9059, DOI: 10.1109/JOE.2016.2618182
IEEE Journal of Oceanic Engineering 42/4 2020-01-21
2017 Martijn J. A. Zeestraten, Ioannis Havoutis, Joao Silverio, Sylvain Calinon, Darwin G. Caldwell
An Approach for Imitation Learning on Riemannian Manifolds
published pages: 1240-1247, ISSN: 2377-3766, DOI: 10.1109/LRA.2017.2657001
IEEE Robotics and Automation Letters 2/3 2020-01-21
2018 E. Simetti, G. Casalino, F. Wanderlingh, M. Aicardi
Task priority control of underwater intervention systems: Theory and applications
published pages: 40-54, ISSN: 0029-8018, DOI: 10.1016/j.oceaneng.2018.06.026
Ocean Engineering 164 2020-01-21
2015 Jeremi Gancet, Diego Urbina, Pierre Letier, Michel Ilzokvitz, Peter Weiss, Frederic Gauch, Gianluca Antonelli, Giovanni Indiveri, Giuseppe Casalino, Andreas Birk, Max Folkert Pfingsthorn, Sylvain Calinon, Ajay Tanwani, Alessio Turetta, Cees Walen, Lisa Guilpain
DexROV: Dexterous Undersea Inspection and Maintenance in Presence of Communication Latencies
published pages: 218-223, ISSN: 2405-8963, DOI: 10.1016/j.ifacol.2015.06.036
IFAC-PapersOnLine 48/2 2020-01-21
2016 Leonel Rozo, João Silvério, Sylvain Calinon, Darwin G. Caldwell
Learning Controllers for Reactive and Proactive Behaviors in Human–Robot Collaboration
published pages: , ISSN: 2296-9144, DOI: 10.3389/frobt.2016.00030
Frontiers in Robotics and AI 3 2020-01-21
2016 Enrico Simetti, Giuseppe Casalino
A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control
published pages: , ISSN: 0921-0296, DOI: 10.1007/s10846-016-0368-6
Journal of Intelligent & Robotic Systems 2020-01-21
2016 Signe Moe, Gianluca Antonelli, Andrew R. Teel, Kristin Y. Pettersen, Johannes Schrimpf
Set-Based Tasks within the Singularity-Robust Multiple Task-Priority Inverse Kinematics Framework: General Formulation, Stability Analysis, and Experimental Results
published pages: , ISSN: 2296-9144, DOI: 10.3389/frobt.2016.00016
Frontiers in Robotics and AI 3 2020-01-21
2016 Leonel Rozo, Sylvain Calinon, Darwin G. Caldwell, Pablo Jimenez, Carme Torras
Learning Physical Collaborative Robot Behaviors From Human Demonstrations
published pages: 513-527, ISSN: 1552-3098, DOI: 10.1109/TRO.2016.2540623
IEEE Transactions on Robotics 32/3 2020-01-21
2016 Paolo Augusto Di Lillo, Enrico Simetti, Daniela De Palma, Elisabetta Cataldi, Giovanni Indiveri, Gianluca Antonelli, Giuseppe Casalino
Advanced ROV Autonomy for Efficient Remote Control in the DexROV Project
published pages: 67-80, ISSN: 0025-3324, DOI: 10.4031/MTSJ.50.4.8
Marine Technology Society Journal 50/4 2020-01-21
2016 Ajay Kumar Tanwani, Sylvain Calinon
Learning Robot Manipulation Tasks With Task-Parameterized Semitied Hidden Semi-Markov Model
published pages: 235-242, ISSN: 2377-3766, DOI: 10.1109/LRA.2016.2517825
IEEE Robotics and Automation Letters 1/1 2020-01-21
2016 Sylvain Calinon
A tutorial on task-parameterized movement learning and retrieval
published pages: 1-29, ISSN: 1861-2776, DOI: 10.1007/s11370-015-0187-9
Intelligent Service Robotics 9/1 2020-01-21
2015 E. Simetti, G. Casalino
Whole body control of a dual arm underwater vehicle manipulator system
published pages: 191-200, ISSN: 1367-5788, DOI: 10.1016/j.arcontrol.2015.09.011
Annual Reviews in Control 40 2020-01-21
2018 Ioannis Havoutis, Sylvain Calinon
Learning from demonstration for semi-autonomous teleoperation
published pages: , ISSN: 0929-5593, DOI: 10.1007/s10514-018-9745-2
Autonomous Robots 2020-01-21

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEXROV" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEXROV" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.2.)

FOOD 2030 FLAGSHIP (2017)

FOOD 2030 Flagship Conference on Research and Innovation for Food and Nutrition Security and Quality Empowerment

Read More  

PLATFORM2 (2015)

Platform of bioeconomy ERA-NET Actions

Read More  

GoodBerry (2016)

Improving the stability of high-quality traits of berry in different environments and cultivation systems for the benefit of European farmers and consumers

Read More