Opendata, web and dolomites

SAWTrain

Dynamic electromechanical control of semiconductor nanostructures by acoustic fields

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SAWTrain project word cloud

Explore the words cloud of the SAWTrain project. It provides you a very rough idea of what is the project "SAWTrain" about.

standard    electro    photons    create    skills    size    electron    piezoelectric    carriers    powerful    mandatory    circuit    students    secondments    acoustic    asia    sawtrain    cover    training    fabricated    supervision    conferences    wavelength    waveguide    provides    exposing    contain    physics    micrometre    sensor    dynamic    ing    sources    modulators    co    america    signal    trainees    transferable    spins    small    plan    competences    disturbances    particle    nanostructures    structures    semiconductor    phonons    multiple    north    resonators    sensors    velocity    pumps    mentorship    courses    electronic    synergy    expertise    materials    puts    basic    single    superficial    exploited    schools    sensitivity    groups    propagation    saw    tool    functionalities    network    tuneable    workshops    coherent    surface    superior    young    presently    transducers    ghz    topical    frequencies    phd    latter    photon    saws    confined    coordinated    chemical    region    vibrations    academic    modulation    hosts    complemented    optical    device    interdisciplinary    career    waves   

Project "SAWTrain" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET AUGSBURG 

Organization address
address: UNIVERSITAETSSTRASSE 2
city: AUGSBURG
postcode: 86159
website: www.uni-augsburg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website http://www.sawtrain.eu
 Total cost 3˙855˙693 €
 EC max contribution 3˙855˙693 € (100%)
 Programme 1. H2020-EU.1.3.1. (Fostering new skills by means of excellent initial training of researchers)
 Code Call H2020-MSCA-ITN-2014
 Funding Scheme MSCA-ITN-ETN
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET AUGSBURG DE (AUGSBURG) coordinator 498˙432.00
2    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) participant 546˙575.00
3    UNIVERSITEIT TWENTE NL (ENSCHEDE) participant 510˙748.00
4    FORSCHUNGSVERBUND BERLIN EV DE (BERLIN) participant 498˙432.00
5    UNIVERSITAT DE VALENCIA ES (VALENCIA) participant 495˙745.00
6    TOSHIBA RESEARCH EUROPE LIMITED UK (CAMBRIDGE) participant 273˙287.00
7    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) participant 263˙659.00
8    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 262˙875.00
9    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) participant 258˙061.00
10    UNIVERSIDAD POLITECNICA DE MADRID ES (MADRID) participant 247˙872.00

Map

 Project objective

The dynamic modulation of semiconductor structures using vibrations provides a powerful tool for the control of the materials properties required for novel functionalities. Surface acoustic waves (SAWs) with GHz-frequencies and micrometre-size wavelength can be generated using piezoelectric transducers fabricated with standard integrated circuit technology. Their small propagation velocity and high sensitivity to disturbances confined to a superficial region have long been exploited in electronic signal processing and sensor applications. The SAW-induced modulation of the electro-optical properties of semiconductor structures is now been used for a wide range of applications including advanced sensors, the control of chemical processes, as well as the coherent control of carriers, spins, photons, and phonons down to the single-particle level. The latter are presently been exploited for different functionalities including advanced waveguide modulators, tuneable optical resonators, and single-electron pumps and single-photon sources. SAWTrain puts together leading groups from Europe, Asia and North America working on SAWs on semiconductor and related nanostructures to create a PhD training network. The synergy resulting from the expertise of these groups will provide PhD students with training opportunities far superior to those offered in existing PhD programmes. Training in research skills with secondments at different hosts will cover state-of-the-art research in the interdisciplinary areas of basic physics, materials, technology, and device concepts related to SAWs. This will be achieved by exposing the trainees to multiple secondments, mandatory co-supervision from different institutions, including a non-academic mentorship. The coordinated training will further contain topical courses, schools, conferences, and workshops and be complemented by measures to develop key competences and transferable skills, fostering the future career plan of the young researchers.

 Deliverables

List of deliverables.
2D SAW cavities Documents, reports 2020-01-24 10:39:27
SAWs in graphene Documents, reports 2020-01-24 10:39:27
Electron pumps Documents, reports 2020-01-24 10:39:27
Electron optics Documents, reports 2020-01-24 10:39:27
SAW-Perspect. report Documents, reports 2020-01-24 10:39:26
Lamb-wave sensors Documents, reports 2020-01-24 10:39:26
Review on SAWs Documents, reports 2020-01-24 10:39:26
Modelling of qubit transfer Documents, reports 2020-01-24 10:39:26
SAW-driven microfluidics Documents, reports 2020-01-24 10:39:27
SAW-driven emission in Si Documents, reports 2020-01-24 10:39:26
Dot-nano-phononic coupling Documents, reports 2020-01-24 10:39:26
Webpage Websites, patent fillings, videos etc. 2020-01-24 10:39:25

Take a look to the deliverables list in detail:  detailed list of SAWTrain deliverables.

 Publications

year authors and title journal last update
List of publications.
2018 C Caliendo, M Hamidullah
Pressure sensing with zero group velocity lamb modes in self-supported a-SiC/c-ZnO membranes
published pages: 385102, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aad6f3
Journal of Physics D: Applied Physics 51/38 2020-01-24
2019 J P Lee, B Villa, A J Bennett, R M Stevenson, D J P Ellis, I Farrer, D A Ritchie, A J Shields
A quantum dot as a source of time-bin entangled multi-photon states
published pages: 25011, ISSN: 2058-9565, DOI: 10.1088/2058-9565/ab0a9b
Quantum Science and Technology 4/2 2020-01-24
2019 Per Delsing, Andrew N Cleland, Martin J A Schuetz, Johannes Knörzer, Géza Giedke, J Ignacio Cirac, Kartik Srinivasan, Marcelo Wu, Krishna Coimbatore Balram, Christopher Bäuerle, Tristan Meunier, Christopher J B Ford, Paulo V Santos, Edgar Cerda-Méndez, Hailin Wang, Hubert J Krenner, Emeline D S Nysten, Matthias Weiß, Geoff R Nash, Laura Thevenard, Catherine Gourdon, Pauline Rovillain, Max Mar
The 2019 surface acoustic waves roadmap
published pages: 353001, ISSN: 0022-3727, DOI: 10.1088/1361-6463/ab1b04
Journal of Physics D: Applied Physics 52/35 2020-01-24
2019 Antonio Crespo Poveda, Dominik D Bühler, Andrés Cantarero Sáez, Paulo V Santos, Maurício M de Lima
Semiconductor optical waveguide devices modulated by surface acoustic waves
published pages: 253001, ISSN: 0022-3727, DOI: 10.1088/1361-6463/ab1464
Journal of Physics D: Applied Physics 52/25 2020-01-24
2019 L.M. Wells, S. Kalliakos, B. Villa, D.J.P. Ellis, R.M. Stevenson, A.J. Bennett, I. Farrer, D.A. Ritchie, A.J. Shields
Photon Phase Shift at the Few-Photon Level and Optical Switching by a Quantum Dot in a Microcavity
published pages: , ISSN: 2331-7019, DOI: 10.1103/physrevapplied.11.061001
Physical Review Applied 11/6 2020-01-24
2019 Paul L.J. Helgers, Haruki Sanada, Yoji Kunihashi, Antonio Rubino, Christopher J.B. Ford, Klaus Biermann, Paulo V. Santos
Sidewall Quantum Wires on Ga As (001) Substrates
published pages: , ISSN: 2331-7019, DOI: 10.1103/physrevapplied.11.064017
Physical Review Applied 11/6 2020-01-24
2018 J. P. Lee, L. M. Wells, B. Villa, S. Kalliakos, R. M. Stevenson, D. J. P. Ellis, I. Farrer, D. A. Ritchie, A. J. Bennett, A. J. Shields
Controllable Photonic Time-Bin Qubits from a Quantum Dot
published pages: , ISSN: 2160-3308, DOI: 10.1103/physrevx.8.021078
Physical Review X 8/2 2020-01-24
2017 M. Fatima Romero, Alberto Bosca, Jorge Pedros, Javier Martinez, Rajveer Fandan, Tomas Palacios, Fernando Calle
Impact of 2D-Graphene on SiN Passivated AlGaN/GaN MIS-HEMTs Under Mist Exposure
published pages: 1441-1444, ISSN: 0741-3106, DOI: 10.1109/LED.2017.2747500
IEEE Electron Device Letters 38/10 2020-01-24
2017 C Caliendo, M Hamidullah
Zero-group-velocity acoustic waveguides for high-frequency resonators
published pages: 474002, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aa900f
Journal of Physics D: Applied Physics 50/47 2020-01-24
2016 Muhammad Hamidullah, Cinzia Caliendo
PMMA/ZnO/glass Love wave sensor for liquids sensing
published pages: C005, ISSN: , DOI: 10.3390/ecsa-3-C005
Proceedings of 3rd International Electronic Conference on Sensors and Applications 2020-01-24
2017 Emeline D S Nysten, Yong Heng Huo, Hailong Yu, Guo Feng Song, Armando Rastelli, Hubert J Krenner
Multi-harmonic quantum dot optomechanics in fused LiNbO 3 –(Al)GaAs hybrids
published pages: 43LT01, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aa861a
Journal of Physics D: Applied Physics 50/43 2020-01-24
2017 D. R. M. Arvidsson-Shukur, H. V. Lepage, E. T. Owen, T. Ferrus, C. H. W. Barnes
Protocol for fermionic positive-operator-valued measures
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.96.052305
Physical Review A 96/5 2020-01-24
2017 B. Villa, A. J. Bennett, D. J. P. Ellis, J. P. Lee, J. Skiba-Szymanska, T. A. Mitchell, J. P. Griffiths, I. Farrer, D. A. Ritchie, C. J. B. Ford, A. J. Shields
Surface acoustic wave modulation of a coherently driven quantum dot in a pillar microcavity
published pages: 11103, ISSN: 0003-6951, DOI: 10.1063/1.4990966
Applied Physics Letters 111/1 2020-01-24
2016 C. Caliendo, M. Hamidullah, F. Mattioli
Finite Element Modeling and Synthesis of c-axis Tilted AlN TFBAR for Liquid Sensing Applications
published pages: 1032-1035, ISSN: 1877-7058, DOI: 10.1016/j.proeng.2016.11.333
Procedia Engineering 168 2020-01-24
2017 Cinzia Caliendo, Muhammad Hamidullah, Farouk Laidoudi
Amorphous SiC/c-ZnO-Based Quasi-Lamb Mode Sensor for Liquid Environments
published pages: 1209, ISSN: 1424-8220, DOI: 10.3390/s17061209
Sensors 17/6 2020-01-24
2018 A Hernández-Mínguez, Y-T Liou, P V Santos
Interaction of surface acoustic waves with electronic excitations in graphene
published pages: 383001, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aad593
Journal of Physics D: Applied Physics 51/38 2020-01-24
2019 C Caliendo, M Hamidullah
Guided acoustic wave sensors for liquid environments
published pages: 153001, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aafd0b
Journal of Physics D: Applied Physics 52/15 2020-01-24
2017 Hermann Edlbauer, Shintaro Takada, Grégoire Roussely, Michihisa Yamamoto, Seigo Tarucha, Arne Ludwig, Andreas D. Wieck, Tristan Meunier, Christopher Bäuerle
Non-universal transmission phase behaviour of a large quantum dot
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-017-01685-z
Nature Communications 8/1 2020-01-24
2016 Cinzia Caliendo, Muhammad Hamidullah
A Theoretical Study of Love Wave Sensors Based on ZnO–Glass Layered Structures for Application to Liquid Environments
published pages: 59, ISSN: 2079-6374, DOI: 10.3390/bios6040059
Biosensors 6/4 2020-01-24
2018 R Fandan, J Pedrós, J Schiefele, A Boscá, J Martínez, F Calle
Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates
published pages: 204004, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aab8bd
Journal of Physics D: Applied Physics 51/20 2020-01-24
2018 Alexander S. Kuznetsov, Paul L. J. Helgers, Klaus Biermann, Paulo V. Santos
Quantum confinement of exciton-polaritons in a structured (Al,Ga)As microcavity
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.97.195309
Physical Review B 97/19 2020-01-24
2017 Y-T Liou, A Hernández-Mínguez, J Herfort, J M J Lopes, A Tahraoui, P V Santos
Acousto-electric transport in MgO/ZnO-covered graphene on SiC
published pages: 464008, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aa8e8a
Journal of Physics D: Applied Physics 50/46 2020-01-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SAWTRAIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SAWTRAIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.1.)

LIVE-I (2020)

Lightening and Innovating transmission for improving Vehicle: Environmental Impacts

Read More  

NEWAVE (2019)

Next Water Governance

Read More  

EAGRE (2020)

Eagre/Aegir: high-seas wave-impact modelling

Read More