Opendata, web and dolomites

PlantCellMech SIGNED

Quantification of the role of mechanical stresses in plant cell morphogenesis.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PlantCellMech project word cloud

Explore the words cloud of the PlantCellMech project. It provides you a very rough idea of what is the project "PlantCellMech" about.

mechanical    signals    returning    microtubules    expression    cellulosic    influence    cell    physical    turgor    grow    integration    stresses    cellular    architecture    sainsbury    wall    had    quantitatively    genetic    single    societal    fundamental    plant    pecto    pressure    inside    biological    disrupt    network    amounts    direction    cells    caltech    plants    guiding    modeling    play    nevertheless    combine    orient    directions    biochemical    form    device    host    specific    settings    agricultural    stress    model    stiff    principal    software    organisms    organisation    shape    counterbalances    tissue    custom    mechanisms    understand    mechanics    tissues    micro    creation    morphogenesis    quantitative    candidate    encapsulates    shapes    imaging    created    biologically    mechanically    made    cytoskeletal    suggested    fundamentally    outgoing    living    computational    experimental    laboratory    coupling    functions    wells    thereby    shaped    material   

Project "PlantCellMech" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.slcu.cam.ac.uk/people/pauline-durand
 Total cost 251˙857 €
 EC max contribution 251˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-04-15   to  2019-08-18

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 251˙857.00
2    CALIFORNIA INSTITUTE OF TECHNOLOGYCORP US (PASADENA) partner 0.00

Map

 Project objective

Specific cell and tissue form is essential to support many biological functions of living organisms. During development, the creation of different shapes fundamentally requires the integration of genetic, biochemical and physical mechanisms. In plant, a stiff pecto-cellulosic network encapsulates cells and counterbalances stress created by turgor pressure inside the cell, thereby controlling cell shape. It is well established that the cytoskeletal microtubules network play a key role in the morphogenesis of the plant cell wall by guiding the organisation of new cell wall material. Moreover, it has been suggested that mechanical stresses orient the microtubules along their principal direction, thereby controlling wall architecture and plant cell shape. Nevertheless, to fully understand how plant cells are shaped and how mechanical stresses influence this process, a quantitative approach needs to be established. In this project, we aim to provide new fundamental knowledge on the role of mechanics in plant development at the cellular scale. New experimental and imaging methods are now available to achieve this aim. We will combine experimental approaches and mechanical modeling to study quantitatively how single plant cells respond to mechanical signals and how they are integrated by the cell into changes in genetic expression. The outgoing host at Caltech, and the candidate have had success developing a custom-made micro-wells device to mechanically disrupt single plant cells. By coupling this approach with mechanical modeling and using a novel software developed by the returning host at the Sainsbury Laboratory, this project will lead to fully develop a computational model of plant cells and tissues morphogenesis, as they respond biologically to changes in directions and amounts of physical stress. The success of this project will have a significant societal impact on improving our understanding of how plants grow, and can grow in agricultural settings.

 Publications

year authors and title journal last update
List of publications.
2019 Ting Li, An Yan, Neha Bhatia, Alphan Altinok, Eldad Afik, Pauline Durand-Smet, Paul T. Tarr, Julian I. Schroeder, Marcus G. Heisler, Elliot M. Meyerowitz
Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-08575-6
Nature Communications 10/1 2020-01-22
2019 P. Durand-Smet, Tamsin A. Spelman, E. M. Meyerowitz, H. Jönsson
Cytoskeletal organization in isolated plant cells under geometry control
published pages: , ISSN: 2050-084X, DOI: 10.1101/784595
biorxive submitted to elife 2020-01-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLANTCELLMECH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLANTCELLMECH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More