Opendata, web and dolomites

MULTIZONAL SCAFFOLD TERMINATED

Multizonal scaffold system based on collagen and copper doped mesoporous bioactive glass microspheres for dual release of growth factors for application as wound dressing material.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MULTIZONAL SCAFFOLD project word cloud

Explore the words cloud of the MULTIZONAL SCAFFOLD project. It provides you a very rough idea of what is the project "MULTIZONAL SCAFFOLD" about.

received    materials    phd    he    first    consecutive    original    cell    thesis    international    thomson    structure    col    collagen    foreign    science    pdgf    healthcare    she    bioactive    respected    beneficiary    vegf    finland    cu    depict    until    named    molecules    multifunctional    cited    angiogenetic    prof    six    nganga    fellows    broad    authored    recognised    cutting    defended    chronic    platelet    player    inner    universities    bb    providers    boccaccini    germany    involvement    profiles    innovative    university    italy    models    biomaterials    nuremberg    scaffold    outer    healing    hosting    delayed    mc    endothelial    reuters    mesoporous    synergy    researcher    components    incorporated    dr    treatment    turku    previously    bioactivity    edge    vitro    mentoring    degradable    vascular    culture    accelerate    antimicrobial    functional    erlangen    mbg    layer    dressing    tests    supervision    glass    2013    profound    release    wound    extensive    zonal    designed    serving    awards    papers    create    doped    engineering    wounds    financial    copper    attempt    burden   

Project "MULTIZONAL SCAFFOLD" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG 

Organization address
address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054
website: www.uni-erlangen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-CAR
 Starting year n.a.
 Duration (year-month-day) from 0000-00-00   to  0000-00-00

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG DE (ERLANGEN) coordinator 171˙460.00

Map

 Project objective

This project is an attempt to develop an effective bioactive wound dressing for the treatment of chronic non-healing wounds that until now depict a major challenge and financial burden to healthcare providers. We propose a zonal, multifunctional scaffold based on collagen (COL) and copper-doped mesoporous bioactive glass (Cu-MBG) serving as release system for vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-BB). The degradable scaffold system is expected to accelerate the wound healing process due to synergy of angiogenetic, bioactivity, and antimicrobial characteristics. This will be the first attempt to create a zonal COL-MBG scaffold system with release of three functional molecules, of which PDGF-BB has not previously been incorporated to MBG. Zonal design enables designed consecutive release profiles, e.g. immediate PDGF-BB from the outer layer and delayed VEGF release from the inner layer of the scaffold. The structure of the scaffold as well as distribution of specific components and their functionality will be characterized using innovative in vitro models including cell culture tests.

The experienced researcher Dr. Nganga defended her PhD-thesis 2013 at University of Turku, Finland and has authored six original research papers. She has profound experience in biomaterials research based on involvement in cutting edge research at Universities in Germany, Finland and Italy. The beneficiary the Department of Materials Science and Engineering and the Institute of Biomaterials at University of Erlangen-Nuremberg is a well-respected international player in biomaterials research with extensive experience of hosting foreign researchers, including MC fellows. Prof. A.R. Boccaccini is a highly recognised researcher in the biomaterials field with broad mentoring and research supervision experience. He has received numerous international awards and has recently been named a Highly Cited Researcher by Thomson Reuters.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MULTIZONAL SCAFFOLD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MULTIZONAL SCAFFOLD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

ERA (2020)

Epigenetic Regulation in Acinetobacter baumannii

Read More