Opendata, web and dolomites

AQUARAMAN SIGNED

Pipet Based Scanning Probe Microscopy Tip-Enhanced Raman Spectroscopy: A Novel Approach for TERS in Liquids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AQUARAMAN project word cloud

Explore the words cloud of the AQUARAMAN project. It provides you a very rough idea of what is the project "AQUARAMAN" about.

pb    spectroscopy    unprecedented    scanning    sensitivity    experiments    consistency    ingenious    playing    powerful    chemistry    tool    spm    liquid    alternative    material    physicochemical    electrochemistry    surface    physics    vibrational    undeniable    interfacial    spanning    dynamic    brings    combines    free    proximities    structural    tip    limited    science    revolutionary    questions    follow    innovative    afm    nanoscale    biology    platform    phenomena    unavoidable    unattainable    intrinsic    pipet    unexplored    reliability    resolution    failing    materials    technique    manner    unfortunately    possession    ters    fundamental    air    chemical    classic    microscopy    environments    stm    founded    spatial    label    surfaces    operate    reveal    optical    probes    hindering    metallized    techniques    liquids    solid    systematic    electrolyte    employment    situ    heterogeneity    opportunity    probe    vacuum    nano    content    raman    stability    enhanced    characterization    water    nowadays   

Project "AQUARAMAN" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE 

Organization address
address: ROUTE DE SACLAY
city: PALAISEAU CEDEX
postcode: 91128
website: http://www.polytechnique.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙528˙442 €
 EC max contribution 1˙528˙442 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-07-01   to  2022-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FR (PALAISEAU CEDEX) coordinator 1˙528˙442.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 0.00

Map

 Project objective

Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science. Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique. We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques. We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AQUARAMAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AQUARAMAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

PROTECHT (2020)

Providing RObust high TECHnology Tags based on linear carbon nanostructures

Read More  

Neuro-UTR (2019)

Mechanism and functional impact of ultra-long 3’ UTRs in the Drosophila nervous system

Read More