Opendata, web and dolomites

Hy-solFullGraph SIGNED

New hybrid-nanocarbon allotropes based on soluble fullerene derivatives in combination with carbon nanotubes and graphene. Application in organic solar cells and biomaterials.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Hy-solFullGraph project word cloud

Explore the words cloud of the Hy-solFullGraph project. It provides you a very rough idea of what is the project "Hy-solFullGraph" about.

nanotechnology    graphene    functional    carbon    hydrophobic    biomaterials    chemistry    interactions    tissue    energy    reactivity    assist    first    packing    crossroads    ultimately    group    molecular    herein    attachment    scas    functionalisation    regeneration    chemical    play    solar    allotropes    advantage    unravelled    additional    superstructured    hy    synthesised    derivatisation    physical    assembly    performance    solubility    synthesis    solfullgraph    changing    applications    designed    science    materials    cells    pattern    endow    optolectronical    overarching    hydrophilic    nanomaterials    optoelectronic    supramolecular    polyfluorinated    tune    tailoring    prepare    biomedical    regarded    substituents    levels    time    advantages    decoration    cnt    functionalise    electronic    nerve    behaviours    covalent    hybrid    organic    electrical    maximise    precise    fullerene    outstanding    candidates    synthetic    fullerenes    c60    selectively    transfer   

Project "Hy-solFullGraph" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG 

Organization address
address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054
website: www.uni-erlangen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG DE (ERLANGEN) coordinator 159˙460.00

Map

 Project objective

The overarching goal of the Hy-solFullGraph project is to undertake, from a molecular level, the synthesis of new functional hybrid materials based on carbon allotropes with outstanding properties. Synthetic carbon allotropes (SCAs) are regarded to be among the most promising candidates for future high performance materials. Precise control of the derivatisation will play a key role in tailoring their solubility and reactivity to maximise the advantages of their outstanding properties. We propose herein 1) to selectively functionalise C60 fullerenes with different substituents (hydrophobic, hydrophilic, and polyfluorinated) to tune their solubility and their superstructured assembly. 2) By controlling the addition pattern, we will include an additional functional group which will facilitate their covalent attachment to other carbon allotropes such as graphene or CNT. In this way, new Hybrid-SCAs will be synthesised for the very first time and the interactions between the hybrid allotropes will be unravelled. 3) Moreover, by changing the chemical decoration around the allotropes, we will be able to endow them with different functionality for their application in optoelectronic and biomedical fields. For optoelectronic applications, such as the development of solar cells, we propose to tune the electronic interactions and energy levels of fullerene and graphene and to control the energy transfer processes and packing behaviours between the allotropes by well-designed chemical functionalisation. Furthermore, we will use the hydrophilic fullerenes to prepare functional biomaterials by taking advantage of their electrical properties to ultimately assist nerve tissue regeneration. The project will be developed at the crossroads of organic and supramolecular chemistry, materials science, nanotechnology and physical chemistry to produce novel synthetic hybrid carbon allotropes with tailored properties towards new nanomaterials for optolectronical and biomedical applications

 Publications

year authors and title journal last update
List of publications.
2017 Tao Wei, M. Eugenia Pérez-Ojeda, Andreas Hirsch
The first molecular dumbbell consisting of an endohedral Sc 3 N@C 80 and an empty C 60 -fullerene building block
published pages: 7886-7889, ISSN: 1359-7345, DOI: 10.1039/C7CC03012F
Chemical Communications 53/56 2019-06-11
2018 M. Eugenia Pérez-Ojeda, Isabell Wabra, Christoph Böttcher, Andreas Hirsch
Fullerene Building Blocks with Tailor-Made Solubility and New Insights into Their Hierarchical Self-Assembly
published pages: 14088-14100, ISSN: 0947-6539, DOI: 10.1002/chem.201803036
Chemistry - A European Journal 24/53 2019-05-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HY-SOLFULLGRAPH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HY-SOLFULLGRAPH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

ERA (2020)

Epigenetic Regulation in Acinetobacter baumannii

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More