Opendata, web and dolomites

MetEpiStem SIGNED

Dissecting the crosstalk between metabolism and transcriptional regulation in pluripotent stem cells.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MetEpiStem project word cloud

Explore the words cloud of the MetEpiStem project. It provides you a very rough idea of what is the project "MetEpiStem" about.

gain    regenerative    deepen    tool    remarkably    metabolism    give    conserved    expansion    levels    differentiation    meet    na    generation    gene    profiles    mechanism    concert    characterised    transcriptome    found    renewal    medicine    genetic    combined    pluripotent    evolution    energy    coupled    adjusted    manipulation    conceptually    model    largely    line    profiling    reset    regulate    fascinating    unknown    somatic    transcriptional    differentiated    computational    ve    regulatory    pluripotency    cutting    network    advantage    restriction    germ    partly    cell    valuable    molecular    iuml    maintenance    human    match    developmental    insights    unprecedented    thanks    edge    biology    regulated    body    sharing    metabolic    devoid    stem    transcription    self    dynamically    epigenetics    explore    modifications    technologies    repressive    pscs    cells    mechanisms    reciprocally    chromatin    reprogramming    epigenome    epigenetic    feedback    opportunity    mouse    altogether   

Project "MetEpiStem" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI PADOVA 

Organization address
address: VIA 8 FEBBRAIO 2
city: PADOVA
postcode: 35122
website: www.unipd.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙498˙232 €
 EC max contribution 1˙498˙232 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI PADOVA IT (PADOVA) coordinator 1˙498˙232.00

Map

 Project objective

Pluripotent Stem cells (PSCs) can give rise to all differentiated cells of the body and the germ line, which makes them conceptually fascinating and a valuable tool for regenerative medicine. Mouse PSCs are devoid of any developmental restriction partly thanks to their “open” chromatin, characterised by remarkably low levels of repressive epigenetic modifications. Metabolism is a key feature that can be adjusted to meet the cell’s needs, and that has the potential to feedback on transcription and epigenetics. How metabolism is regulated in PSCs and whether this is important for their biology remains largely unknown. We recently found a new molecular mechanism by which energy production is coupled to pluripotency. Here we propose to deepen our understanding of how metabolism, epigenetics and transcription are reciprocally regulated for the self-renewal and differentiation of PSCs. To gain insights into how metabolism is dynamically regulated in concert with the transcriptome and epigenome, we will also use somatic cell reprogramming into PSCs, a process in which both the metabolic and epigenetic profiles must be reset to match those of PSCs. Moreover, taking advantage of the recent generation of novel human PSCs sharing most of the transcriptional and epigenetic features found in naïve mouse PSCs, we will explore how metabolic regulatory mechanisms key for the generation and maintenance of pluripotency are conserved throughout evolution. Altogether, large-scale transcriptional, epigenetic and metabolic profiling of PSCs, combined with cutting edge technologies for their generation, expansion and genetic manipulation, will give us the unprecedented opportunity to build a comprehensive computational model of the metabolic network in PSCs, and to study how gene transcription and metabolism regulate each other.

 Publications

year authors and title journal last update
List of publications.
2019 Sara‐Jane Dunn, Meng Amy Li, Elena Carbognin, Austin Smith, Graziano Martello
A common molecular logic determines embryonic stem cell self‐renewal and reprogramming
published pages: e100003, ISSN: 0261-4189, DOI: 10.15252/embj.2018100003
The EMBO Journal 38/1 2019-06-06
2019 Stefano Giulitti, Marco Pellegrini, Irene Zorzan, Paolo Martini, Onelia Gagliano, Margherita Mutarelli, Michael Johannes Ziller, Davide Cacchiarelli, Chiara Romualdi, Nicola Elvassore, Graziano Martello
Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics
published pages: 275-286, ISSN: 1465-7392, DOI: 10.1038/s41556-018-0254-5
Nature Cell Biology 21/2 2019-06-06
2019 Valentina Perrera, Graziano Martello
How Does Reprogramming to Pluripotency Affect Genomic Imprinting?
published pages: , ISSN: 2296-634X, DOI: 10.3389/fcell.2019.00076
Frontiers in Cell and Developmental Biology 7 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METEPISTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METEPISTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More