Opendata, web and dolomites

OPTiAGE

The trade-off between longevity and reproduction: optimal control of aging

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OPTiAGE project word cloud

Explore the words cloud of the OPTiAGE project. It provides you a very rough idea of what is the project "OPTiAGE" about.

theory    genetic    evolutionary    shaped    diverse    lifespan    elegans    rate    dictated    function    genetics    scarce    principles    directed    resource    delayed    disposable    living    depends    predicted    organismal    age    trade    genetically    optimality    extension    longer    kinetic    mutation    reproduction    partitioning    fitness    mathematical    postulates    advantage    rhesus    damage    environmental    nematodes    accumulation    poor    allocation    continuous    self    maintenance    nutrients    employing    thereby    unavailable    quantify    depending    restriction    animals    proposes    model    longevity    shorter    dst    food    exposed    identical    ultimately    limitation    off    aging    environment    repair    plentiful    modulate    monkeys    varies    examine    soma    labelling    nematode    isotope    assay    line    competitive    maximize    conditions    combination    organisms    pave    worms    combining    inverse    adapt    developmental    nutrient    optimal    environments    experiment    alleles   

Project "OPTiAGE" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION 

Organization address
address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058
website: www.fmi.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website http://www.towbinlab.org
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION CH (BASEL) coordinator 187˙419.00

Map

 Project objective

The lifespan of genetically identical organisms varies depending on the environment they are exposed to. A well-known example is the extension of lifespan by nutrient restriction, as observed in animals as diverse as nematodes and rhesus monkeys. Why does the lifespan of animals change with environmental conditions? Is there an advantage to living longer when food is poor, and to living shorter when food is plentiful? Evolutionary theory, known as the disposable soma theory (DST), proposes that organisms age due to the accumulation of damage. According to theory, aging can be delayed by continuous damage repair, but such repair requires resources which are then unavailable for other tasks, such as reproduction. The DST therefore postulates a trade-off between longevity and reproduction dictated by the limitation of available resources. The optimal allocation of resources to self-maintenance depends on the environment. In particular, increased allocation to self-maintenance is predicted to maximize fitness when nutrients are scarce. Combining theory and experiment, I will investigate how the optimal allocation of resources to self-maintenance depends on nutrient availability using the nematode C. elegans as a model system. I will quantify the partitioning of resources between self-maintenance and reproduction using isotope labelling and kinetic modelling, and modulate resource allocation using available genetic alleles and directed mutation. Employing a competitive growth assay, I will test if fitness depends on resource allocation by an inverse U-shaped function, as predicted by theory and examine how the optimal resource allocation depends on nutrient availability. I will thereby assess if worms adapt their rate of aging to maximize their fitness in different environments. Ultimately, the proposed combination of mathematical modelling and developmental genetics will pave the way for a new line of research using optimality principles to study organismal development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTIAGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OPTIAGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

ReSOLeS (2019)

New Reconfigurable Spectrum Optical Fibre Laser Sources

Read More