Opendata, web and dolomites

PATHWISE SIGNED

Pathwise methods and stochastic calculus in the path towards understanding high-dimensional phenomena

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PATHWISE project word cloud

Explore the words cloud of the PATHWISE project. It provides you a very rough idea of what is the project "PATHWISE" about.

versions    phenomena    connections    regarding    theory    minkowski    gaussian    asz    noise    bodies    concentration    gibbs    nonlinear    networks    central    kannan    regularization    corresponding    coauthors    hypercube    convex    works    dimensional    relies    particle    associate    convexity    quantities    tractable    inequality    semigroup    stability    geometry    boolean    lov       few    brunn    extend    stochastic    play    theorems    questions    rely    deviations    managed    robustness    introduction    calculus    object    symbiosis    latter    kls    mass    kernel    tools    quantitative    concepts    space    interacting    thereof    dimension    explore    first    bounds    heat    variance    hyperplane    computer    distributions    transportation    isoperimetric    inequalities    mathematics    probability    entropic    former    ideas    science    simonovits    statistics    adjacent    notions    conjectures    conjecture    behavior    hypercontractivity    mean    pathwise    originating    progress    entropy    limit    jumps    free   

Project "PATHWISE" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙308˙188 €
 EC max contribution 1˙308˙188 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙308˙188.00

Map

 Project objective

Concepts from the theory of high-dimensional phenomena play a role in several areas of mathematics, statistics and computer science. Many results in this theory rely on tools and ideas originating in adjacent fields, such as transportation of measure, semigroup theory and potential theory. In recent years, a new symbiosis with the theory of stochastic calculus is emerging.

In a few recent works, by developing a novel approach of pathwise analysis, my coauthors and I managed to make progress in several central high-dimensional problems. This emerging method relies on the introduction of a stochastic process which allows one to associate quantities and properties related to the high-dimensional object of interest to corresponding notions in stochastic calculus, thus making the former tractable through the analysis of the latter.

We propose to extend this approach towards several long-standing open problems in high dimensional probability and geometry. First, we aim to explore the role of convexity in concentration inequalities, focusing on three central conjectures regarding the distribution of mass on high dimensional convex bodies: the Kannan-Lov'asz-Simonovits (KLS) conjecture, the variance conjecture and the hyperplane conjecture as well as emerging connections with quantitative central limit theorems, entropic jumps and stability bounds for the Brunn-Minkowski inequality. Second, we are interested in dimension-free inequalities in Gaussian space and on the Boolean hypercube: isoperimetric and noise-stability inequalities and robustness thereof, transportation-entropy and concentration inequalities, regularization properties of the heat-kernel and L_1 versions of hypercontractivity. Finally, we are interested in developing new methods for the analysis of Gibbs distributions with a mean-field behavior, related to the new theory of nonlinear large deviations, and towards questions regarding interacting particle systems and the analysis of large networks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHWISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHWISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

SERENiTi (2018)

Software Enhanced Research iN Transient kinetics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More