Opendata, web and dolomites

VESSEL CO-COPTION SIGNED

Vessel co-option and radioresistance in glioblastoma

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 VESSEL CO-COPTION project word cloud

Explore the words cloud of the VESSEL CO-COPTION project. It provides you a very rough idea of what is the project "VESSEL CO-COPTION" about.

mostly    understand    radioresistance    impacts    exact    differentiated    glioma    caused    patients    benefit    vessels    radiation    unknown    deadliest    directional    brain    removed    bulk    regime    resistance    multiple    spreading    niche    treatment    renewing    therapeutic    involvement    survival    uncover    efficacy    cells    dynamics    chemotherapy    glioblastoma    multiphoton    stem    mechanistically    invasive    orthotopic    organotypic    insights    radiotherapy    rate    therapy    tumor    underlying    models    despite    gsc    highlights    interaction    attributed    progression    resection    perivascular    regrowth    fraction    option    intravital    space    microscopy    strategies    types    cancer    migration    multipotent    cultures    initiating    aggressive    mechanism    molecular    self    recurrence    vessel    confers    receive    90    co    vascular    cellular    screenings    hypothesis    clinically    radiosensitize    connections    human    gscs    gbm   

Project "VESSEL CO-COPTION" data sheet

The following table provides information about the project.

Coordinator
INSTITUT CURIE 

Organization address
address: rue d'Ulm 26
city: PARIS
postcode: 75231
website: www.curie.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙499˙823 €
 EC max contribution 1˙499˙823 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2024-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT CURIE FR (PARIS) coordinator 1˙499˙823.00

Map

 Project objective

Glioblastoma (GBM) is one of the deadliest types of human cancer. Despite a very aggressive treatment regime – including resection of the tumor, radiation and chemotherapy – its estimated recurrence rate is more than 90%. Recurrence is mostly caused by the regrowth of highly invasive cells spreading from the tumor bulk, which are not removed by resection. To develop an effective therapeutic approach, we need to better understand the underlying molecular mechanism of radiation resistance and tumor spreading in GBM. Radioresistance in GBM is attributed to glioma stem cells (GSCs), a fraction of perivascular, self-renewing, multipotent and tumor-initiating cells. Growing evidence highlights the perivascular space as a niche for GSC survival, resistance to therapy, progression and dissemination. The unknown factor is the dynamics of GSCs, how they end up in the vascular niche and how this impacts on radioresistance. My overall hypothesis is that GSCs reach the perivascular niche through vessel co-option - the directional migration of tumor cells towards vessels - and that targeting vessel co-option has the potential to radiosensitize GBM. With this project, we aim to uncover the exact molecular and cellular connections among vessel co-option, GSCs, the vascular niche and radioresistance. Using multiple strategies, such as multiphoton intravital microscopy, orthotopic models of GBM, organotypic cultures, screenings and survival studies, we will investigate and mechanistically change the dynamics of GSC and differentiated GBM cells in order to understand the role of their interaction with brain vessels and whether this confers resistance to radiotherapy. These studies will provide clinically relevant insights into the involvement of GSCs, the vascular niche and vessel co-option in the resistance of GBM to therapy. Since all GBM patients receive radiotherapy, many would benefit from therapeutic strategies aimed at increasing its efficacy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VESSEL CO-COPTION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VESSEL CO-COPTION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

LO-KMOF (2019)

Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Read More  

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More