Opendata, web and dolomites

GATE SIGNED

Glass Assessment Technology for glass Embedded antennas

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "GATE" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-10   to  2021-10-09

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 224˙933.00

Map

 Project objective

The advanced applications in 5G, such as Internet of Things, smart building, and smart city, are driving the growth of indoor broadband communications. Small cell is a promising technology to address capacity crunch problem in-building. Glass is a popular material widely used in modern buildings. Considering the factors of aesthetics and stability, embedding antennas into glass can be a good choice for deploying small cells indoors. However, how the glass impacts the wireless performance of a glass embedded antenna has not been well investigated. In this project, we will study the influence of EM properties of glass on the wireless performance and will design and optimise glass to achieve desirable wireless performance while maintaining acceptable optical and thermal properties. First, we will define measurable wireless performance metrics for glass embedded antennas, where the radiation efficiency, bandwidth, radiation pattern, coverage, and signal to interference plus noise ratio will be taken into account. Then, we will bridge the gap between ingredient ratios and structures of glass and the wireless performance of the embedded antenna. Three glass structures including coated glass, laminated glass and doping glass will be modeled. Finally, we will develop a method that can obtain a trade-off among wireless, optical and thermal performances of glasses. The ingredient ratio and structure of glass will be optimised in term of wireless performance under the constraints of optical and thermal performances, so that the glass can be multifunctional and smart. After this project, the benefits and feasibility of glass embedded antenna arrays can be assessed and the key technology of optimising glass embedded antennas can be established.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GATE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GATE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MetAeAvIm (2019)

The Role of the Metabolism in Mosquito Immunity against Dengue virus in Aedes aegypti

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

PocketLight (2020)

Compact all-fibre nonlinear resonators as technological platform for a new generation of miniaturised light sources.

Read More