Opendata, web and dolomites

COCONUTE SIGNED

COmpound COatings NUrturing applications in Tissue Engineering

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 COCONUTE project word cloud

Explore the words cloud of the COCONUTE project. It provides you a very rough idea of what is the project "COCONUTE" about.

liquids    living    coatings    soft    setups    experimental    electronics    training    perfect    researcher    time    create    particles    vitro    dip    mechanicians    carry    resolved    thriving    experts    turn    unknown    physical    techniques    ranging    thereby    whom    hindering    sharing    meet    artificial    physics    expertise    guarantee    medicine    collaborate    independent    applicability    arrangements    posed    deposition    physicist    group    cells    suspension    context    theoretical    multidisciplinary    laden    chip    delicate    manufacturing    me    reinforce    space    coating    fluid    particle    mechanics    technologies    layers    obtain    tissue    tissues    ecosystem    tools    nature    supervisors    gaining    regenerative    compound    cell    limits    manufacture    technique    adapt    bioengineering    mentioned    emerges    exhibiting    modern    engineering    inherent    coconute    host    biomaterials    chances    semiconductor    distributions    skin    routinely   

Project "COCONUTE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD CARLOS III DE MADRID 

Organization address
address: CALLE MADRID 126
city: GETAFE (MADRID)
postcode: 28903
website: http://www.uc3m.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 160˙932 €
 EC max contribution 160˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD CARLOS III DE MADRID ES (GETAFE (MADRID)) coordinator 160˙932.00

Map

 Project objective

The deposition of particle-laden coatings is key to a number of modern technologies, ranging from semiconductor electronics to bioengineering. In the thriving field of regenerative medicine, deposition processes to manufacture artificial skin in vitro turn out to be particularly challenging. Because skin is composed of several layers with specific cell distributions, space-resolved deposition of cells has to be achieved to obtain viable tissues. However, the delicate nature of living cells and biomaterials strongly limits the number of available techniques, thereby hindering further advances in the field. In this context, COCONUTE emerges as a timely and essential initiative to adapt a well-known technique, dip-coating, to meet the challenges posed by current skin manufacturing technologies. I will investigate, using theoretical and experimental tools, key unknown aspects of the physics of dip-coating in the presence of two liquids, which may have particles in suspension. Gaining further understanding of the physics, I will be able to create compound coatings exhibiting well-controlled arrangements of particles. These particles will have physical properties similar to skin cells to guarantee the applicability of the results to tissue-on-a-chip setups. Not only the time to implement this project is now: the group and supervisors with whom I will carry out my research make a perfect ecosystem for me to turn the project into a success. Being a Soft Matter physicist by training, I will work in a group where fluid mechanicians collaborate routinely with experts in tissue engineering. Thus, the inherent multidisciplinary of the project will allow me to get training in the above-mentioned areas, while also sharing my expertise with the host group. This project will reinforce my chances of becoming an independent researcher in the fields of Soft Matter and Fluid Mechanics, with the focus on state-of-the-art bioengineering applications.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COCONUTE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COCONUTE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More  

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More