Opendata, web and dolomites

MoGEs SIGNED

Modelling of Generic Extreme mass-ratio inspirals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MoGEs project word cloud

Explore the words cloud of the MoGEs project. It provides you a very rough idea of what is the project "MoGEs" about.

emris    redshift    era    scheme    reconstructing    sum    ligo    evolution    inspirals    perturbation    mass    mst    teukolsky    previously    simplifying    precise    solutions    equation    waves    equatorial    first    accurate    searches    compact    momentum    particle    correction    spin    inspiralling    capitalize    metric    expertise    tests    fundamental    observatories    turn    mode    regularization    calculated    gsf    emri    assumptions    spacetime    virgo    body    force    albert    gravitational    proven    physical    astronomy    angular    binaries    hosts    self    generate    semi    data    upcoming    aei    eccentricity    eccentric    combination    einstein    until    extreme    observation    motion    effectiveness    proposes    analytical    models    moges    immediately    geometry    improvements    latter    spinning    extracted    source    wealth    eob    objects    local    pipelines    inclination    formalism    yield    relativity    ongoing    detection    circular    map    elisa    regular    time    simpler    ratio    gws    gw    linear    orbits    calculate    combining   

Project "MoGEs" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: Munich
postcode: 80539
website: www.mpg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://mvdmeent.wordpress.com/moges/
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-03-01   to  2019-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (Munich) coordinator 171˙460.00

Map

 Project objective

Inspiralling binaries of compact objects are a promising source of gravitational waves (GWs) in the upcoming era of GW astronomy. The MoGEs project proposes to take the next step in modelling the evolution of compact binaries using the gravitational self-force (GSF) formalism. Until now, the linear-in-mass-ratio GSF has only been calculated under the simplifying assumptions of non-spinning, circular, and/or equatorial binaries. MoGEs will, for the first time, calculate linear-in-mass-ratio GSF including all effects of spin, eccentricity and inclination.

This is achieved by reconstructing the local metric perturbation produced by a particle from solutions of the Teukolsky equation, which in turn are obtained using the semi-analytical MST formalism. The regular correction to the motion of the particle is then extracted using a mode-sum regularization scheme. The applicant has previously proven this combination of methods effective in the simpler case of equatorial orbits.

Knowledge of the GSF will allow the modelling of the evolution of extreme mass-ratio inspirals (EMRIs) and the GWs that they generate. Accurate modelling of the latter is essential if they are to be observed by future GW observatories such as eLISA. Observation of GWs from an EMRI would yield a wealth of physical information, from precise measurements of physical characteristics of the observed system (including mass, angular momentum, and redshift) to fundamental tests of general relativity by providing an accurate map of the spacetime geometry generated by the system.

More immediately, MoGEs will capitalize on the new GSF data by combining the expertise of the applicant and the hosts at the Albert Einstein Institute (AEI) to improve the effectiveness of effective-one-body (EOB) models for eccentric spinning binaries. Any such improvements can directly be deployed in the ongoing GW searches at LIGO and Virgo, that already use EOB models in their detection pipelines.

 Publications

year authors and title journal last update
List of publications.
2019 Andrea Antonelli, Alessandra Bounanno, Jan Steinhoff, Maartem van de Meent, Justin Vines
Energetics of two-body Hamiltonians in post-Minkowskian gravity
published pages: , ISSN: 2470-0029, DOI:
Physical Review D 2019-06-06
2018 Donato Bini, Thibault Damour, Andrea Geralico, Chris Kavanagh, Maarten van de Meent
Gravitational self-force corrections to gyroscope precession along circular orbits in the Kerr spacetime
published pages: 104062, ISSN: 2470-0029, DOI: 10.1103/PhysRevD.98.104062
Physical Review D 98/10 2019-04-18
2018 Maarten van de Meent, Niels Warburton
Fast self-forced inspirals
published pages: 144003, ISSN: 0264-9381, DOI: 10.1088/1361-6382/aac8ce
Classical and Quantum Gravity 35/14 2019-04-18
2018 Maarten van de Meent
Gravitational self-force on generic bound geodesics in Kerr spacetime
published pages: 104033, ISSN: 2470-0029, DOI: 10.1103/PhysRevD.97.104033
Physical Review D 97/10 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOGES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOGES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

signalling dynamics (2020)

Bridging biophysics and cell biology: The role of G protein-coupled receptor conformations in signalling

Read More  

MegaBiCycle (2019)

The role of megafauna in biogeochemical cycles and greenhouse gas fluxes: implications for climate and ecosystems throughout history

Read More  

HOCOM (2019)

A Transparent Hole Conductor by Combinatorial Techniques for Next-Generation Energy Conversion Devices

Read More