FLORA STOP INFECTION

ROLE OF THE MICROBIOTA IN THE DEFENSE AGAINST ANTIBIOTIC RESISTANT PATHOGENS

 Coordinatore CENTRO SUPERIOR DE INVESTIGACION EN SALUD PUBLICA 

 Organization address address: Avenida de Cataluna 21
city: Valencia
postcode: 46020

contact info
Titolo: Ms.
Nome: Juana M.
Cognome: Ferrús
Email: send email
Telefono: 34961925907
Fax: +34 961925703

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-12-01   -   2015-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRO SUPERIOR DE INVESTIGACION EN SALUD PUBLICA

 Organization address address: Avenida de Cataluna 21
city: Valencia
postcode: 46020

contact info
Titolo: Ms.
Nome: Juana M.
Cognome: Ferrús
Email: send email
Telefono: 34961925907
Fax: +34 961925703

ES (Valencia) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

treatment    confer    commensal    microbiota    infection    pathogens    sequencing    infections    antibiotic    administration    kpc    vre    colonization    prevent    bacterial    resistant    intestinal    shown    bacteria    populations    protection    throughput    microbial    species   

 Obiettivo del progetto (Objective)

'Antibiotic resistant bacteria, such as Vancomycin-resistant Enterococcus (VRE) or carbapenem-resistant Klebsiella pneumoniae (KPC), are an increasing problem in hospitalized patients and commonly cause infections following antibiotic therapy. Infections with these opportunistic pathogens generally begin by colonization of the intestinal epithelium. Our intestinal tract is inhabited by hundreds of commensal bacterial species that suppress intestinal colonization by antibiotic resistant pathogens. Commensal microbes might prevent infection by releasing inhibitory molecules or by competing for nutrients. In addition, we have shown that the microbiota confers protection against intestinal pathogens by inducing the immune response. Disruption of the microbiota after antibiotic administration enhances intestinal colonization by antibiotic resistant bacteria. However, not much is known about how antibiotic-induced changes in the microbiota increase the risk of infection. Using high-throughput 16S rDNA sequencing, We have begun to study the effect of antibiotic treatment on intestinal microbial populations and VRE/KPC colonization. We have shown that ampicillin treatment induces changes on the commensal flora that extend beyond the course of antibiotic administration. These long-lasting changes allowed establishment and persistence of VRE and KPC in the intestine. We hypothesize that some of the specific populations, lost after antibiotic administration, are key in suppressing VRE and KPC colonization. The goal of this proposal is to identify those specific microbial populations that confer protection against VRE or KPC. The mechanisms by which those bacterial species confer protection will also be studied. We will use a combination of microbiology, immunology and high-throughput sequencing techniques to pursue this goal. The results obtained in this proposal may lead to new therapeutic approaches to treat and prevent infections with antibiotic resistant pathogens.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MOLFACTORY (2013)

Towards a ‘molecular factory’: Processive sequence-selective synthesis with a synthetic molecular machine

Read More  

MORLAS (2012)

Morphosyntactic language skills in deaf children with a cochlear implant: a cross-linguistic study on Dutch and German

Read More  

SONART (2014)

Sounds of Rock Art. Archaeoacoustics and post-palaeolithic Schematic art in the Western Mediterranean

Read More