MADPII

Multiscale Analysis and Design for Process Intensification and Innovation

 Coordinatore UNIVERSITEIT GENT 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 2˙494˙700 €
 EC contributo 2˙494˙700 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-05-01   -   2017-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT GENT

 Organization address address: SINT PIETERSNIEUWSTRAAT 25
city: GENT
postcode: 9000

contact info
Titolo: Ms.
Nome: Nathalie
Cognome: Vandepitte
Email: send email
Telefono: +32 9 264 3029
Fax: +32 9 264 3583

BE (GENT) hostInstitution 2˙494˙700.00
2    UNIVERSITEIT GENT

 Organization address address: SINT PIETERSNIEUWSTRAAT 25
city: GENT
postcode: 9000

contact info
Titolo: Prof.
Nome: Guy B.M.M.
Cognome: Marin
Email: send email
Telefono: +32 9 2644517

BE (GENT) hostInstitution 2˙494˙700.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

kinetic    sg    cfd    multiscale    combination    chemical    pyrolysis    biomass    modeling    dynamics    technologies    industrial    models    performed    rbr    fundamental   

 Obiettivo del progetto (Objective)

'The current pressures on the major industrial players have necessitated a more urgent push for increased productivity, process efficiency, and waste reduction; i.e. process intensification. Future sizable improvements in these entrenched industrial processes will require either completely novel production technologies, fundamental analysis/modeling methods, or a combination of both. This proposal aims to approach this challenge by using multiscale modeling and experimentation on three fronts: (1) detailed analysis of industrial processes to generate new fundamental chemical understanding, (2) multiscale modeling and evaluation of high-volume chemical processes using a multiscale approach and fundamental chemical understanding, and (3) show the practical applicability of the multiscale approach and use it to critically examine novel technologies in the context of industrial processes. The novel technology portion of this proposal will be focused around a class known as rotating bed reactors in a static geometry (RBR-SG). We will investigate three processes that could benefit from RBR-SG technology: (1) fast pyrolysis of biomass, (2) gasification of biomass, and (3) short contact time catalytic partial oxidation of light hydrocarbons. Experimental reactor and kinetic work and validated computational fluid dynamics (CFD) modeling of the process mentioned above will be used. We will construct two RBR-SG units; heat transfer, adsorption, and pyrolysis gas/solid experiments will be performed in one, while non-reacting flow tests will be performed in the other with other phase combinations. Detailed kinetic models will provide novel insights into the reaction dynamics and impact other research and technologies. The combination of kinetic and CFD models will clearly demonstrate the benefits of a multiscale approach, will definitively identify the process(es) benefitting most from RBR-SG technology, and will enable a first design of the RBR-SG based on our results.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CRC PROGRAMME (2008)

Dissecting the roles of the beta-catenin and Tcf genetic programmes during colorectal cancer progression

Read More  

PREVENTING_CONFLICTS (2008)

"Understanding and preventing conflicts: on the causes of social conflicts, and alternative institutional designs for their prevention"

Read More  

STRUBOLI (2011)

Structure and Bonding at Oxide-Liquid Interfaces

Read More