NFRP

Nano-Engineered Fiber-Reinforced Polymers

 Coordinatore  

 Organization address address: CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
city: GETAFE
postcode: 28906

contact info
Titolo: Mr.
Nome: Miguel ángel
Cognome: Rodiel
Email: send email
Telefono: 34915493422
Fax: 34915503047

 Nazionalità Coordinatore Non specificata
 Totale costo 100˙000 €
 EC contributo 0 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACION IMDEA MATERIALES

 Organization address address: CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
city: GETAFE
postcode: 28906

contact info
Titolo: Mr.
Nome: Miguel ángel
Cognome: Rodiel
Email: send email
Telefono: 34915493422
Fax: 34915503047

ES (GETAFE) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

weight    aircraft    frp    mechanical    polymer    aerospace    materials    architecture    composite    plies    composites    multifunctional    fiber    meshes    carbon    nano   

 Obiettivo del progetto (Objective)

'Fiber-reinforced polymers (FRP's), stronger per unit of weight than steel or aluminium, are highly demanded for high-performance applications. The use of FRP's in aerospace structures can lead to a significant reduction of maintenance costs, carbon imprint by fuel consumptions, COx and NOx emissions, etc. This is the reason why the last civil Airbus aircraft contains up to 52% in weight of composite materials and the Boeing 787 Dreamliner claims to be the first aircraft with a fully composite fuselage. However, composites materials presents several drawbacks that need to be overcome to fully take advantage of their excellent mechanical properties. From a mechanical perspective, aerospace composites are made of carbon fiber “plies” which are held together by a polymer. This polymer can crack easily, which results in the delamination of the plies and the failure of the structure if it is not detected on time. It is also required for aerospace materials to be protected from common environmental occurrences, such as lightning strikes, electromagnetic interferences, electrostatic discharge, etc. Various methods are used to address these concerns, such as the use of metallic meshes or foils. However, these meshes/screens are difficult to handle for both production and repairs, and increase significantly the overall weight of the aircraft. Here, I propose to develop a novel nano-architecture to enhance the mechanical and electrical properties of the composite in the through-the-thickness direction. This nano-architecture will also act as a sensing system, enabling damage detection and localization by resistive-heating based non-destructive evaluation. In summary, the nano-engineered composite proposed here is an intrinsically multifunctional material, with expected over the state-of-the-art mechanical and multifunctional properties.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DELAYING TURBULENCE (2008)

Delay of Turbulence in Pipe Flow

Read More  

SLUDGETREAT (2014)

eco-friendly and energy efficient sewage SLUDGE dewaTeRing through novEl nanomAterials and elecTro-osmotic process

Read More  

SPHINX (2014)

A Co-Evolution Framework for Model Refactoring and Proof Adaptation in Cyber-Physical Systems

Read More