SMASE LIPOSOME

"Targeting atherosclerosis: Raman-spectroscopy validated, triggered release of drugs from de novo phospholipid-incorporating liposomes by sphingomyelinase enzymatic degradation of the membrane bilayer."

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 584 8609

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-09-10   -   2017-01-11

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 584 8609

UK (LONDON) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

atherosclerosis    pathologies    reported    vectors    world    triggered    cells    analogues    plaques    liposome    enzyme    membrane    ceramide    atherosclerotic    endothelial    cell    release    enzymatic    smase    sm    liposomes    drug    drugs   

 Obiettivo del progetto (Objective)

'Cardiovascular diseases are the world’s number one killer, causing 43% of all deaths and costing the EU 192 billion Euros annually. Delaying their progression using e.g. targeted drug delivery to atherosclerotic plaques is a number one priority in modern healthcare. The enzyme sphingomyelinase (SMase) is upregulated in atherosclerotic plaques. In vivo, dysregulation of enzymatic conversion of the cell membrane phospholipid sphingomyelin (SM) to ceramide by SMase leads to a change in ceramide concentration. This causes endothelial dysfunction, atherosclerosis, ischemic heart disease, emphysema, cancers, cystic fibrosis and depression. SMase-targeting drugs are an emerging research topic but no localised delivery vectors to alleviate negative systemic side effects are yet reported. This project marks two world-firsts: SMase as a target for drug delivery, and a liposome formulation from which release is not only targeted but ENDOGENOUSLY TRIGGERED by the target enzyme.

SM analogues will be synthesised and incorporated into the membrane bilayer of drug-loaded liposomes. The ceramide analogue products they form on enzymatic reaction with SMase create drug-eluting pores in regions of high SMase activity (i.e. atherosclerosis) and release an encapsulated drug, but unlike natural ceramides do not interact with cells to trigger responses such as apoptosis. For the first time, toxicity of SM analogues and efficacy of the optimised liposome delivery vectors will be measured on human vascular endothelial cells using state-of-the-art live cell Raman microspectroscopy, which can highlight subtle differences in lipid and cholesterol production and distribution and cell cycle. This never before reported drug delivery platform can be translated to treat many SMase dysregulating pathologies and is a major breakthrough in liposomes for TRIGGERED drug delivery. The impact on health and society of locally treating these pathologies with SMase-targeting drugs cannot be overestimated.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PRECISE (2010)

Predicting eutrophication and climate change impacts on shallow lake ecology and biodiversity: disentangling the effects of temperature and nutrients

Read More  

CORTICAL-ALS (2013)

"Cortico-Spinal Motor Neurons in Amyotrophic Lateral Sclerosis : Contribution, Mechanisms and Therapy"

Read More  

ROBOCON (2009)

Routes to Bose-Einstein Condensation at Room Temperature

Read More