POTENT

Engineering Discoidal Polymeric Nanoconstructs for the Multi-Physics Treatment of Brain Tumors

 Coordinatore FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Italy [IT]
 Totale costo 2˙390˙000 €
 EC contributo 2˙390˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-CoG
 Funding Scheme ERC-CG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-07-01   -   2019-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

 Organization address address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
Titolo: Mr.
Nome: Gabriele
Cognome: Ballero
Email: send email
Telefono: +39 01 071781716
Fax: +39 010720321

IT (GENOVA) hostInstitution 2˙390˙000.00
2    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

 Organization address address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
Titolo: Prof.
Nome: Paolo
Cognome: Decuzzi
Email: send email
Telefono: 3901071781
Fax: 39010720321

IT (GENOVA) hostInstitution 2˙390˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

thermal    lt    poly       malignant    uspios    molecules    rational    dpn    gbm    neovasculature    dpns    synergistically    imaging    therapeutic    polymeric    tumor    agents    synthesis   

 Obiettivo del progetto (Objective)

'Despite significant advances in chemotherapy, the effective treatment of malignant masses via systemically injectable agents are still limited by insufficient accumulation at the biological target (<< 10% injected dose per gram tumor) and non-specific sequestration by the reticulo-endothelial system (tumor/liver < 0.1).

The goal of this proposal is to engineer Discoidal Polymeric Nanoconstructs (DPNs) to preferentially target the malignant neovasculature for the delivery of imaging agents, controlled release of therapeutic molecules and thermal energy. The central hypothesis is that the size, shape, surface properties and stiffness (4S parameters) of the DPNs can be controlled during synthesis, and that therapeutic molecules (Temozolomide), Gd(DOTA) complexes and ultra-small Super-Paramagnetic Iron Oxide nanoparticles (USPIOs) can be efficiently incorporated within the DPN polymeric matrix.

This will be achieved by pursuing 3 specific aims: i) synthesis and physico-chemical characterization of poly(lactic-co-glycolic acid)/poly(ethylene glycol) DPNs with multiple 4S combinations; ii) in-silico and in vitro rational selection of DPN configurations with preferential tumor deposition, low macrophage uptake and high loading; and iii) in-vivo testing of the DPN imaging and therapeutic performance in mice bearing Glioblastoma Multiforme (GBM).

The innovation stays in i) using synergistically three different targeting strategies (rational selection of the 4S parameters; magnetic guidance via external magnets acting on the USPIOs; specific ligand-receptor recognition of the tumor neovasculature); ii) combining therapeutic and imaging molecules within the same nanoconstruct; and iii) employing synergistically different therapeutic approaches (molecular and thermal ablation therapies). This would allow us to support minimally invasive screening via clinical imaging and enhance therapeutic efficacy in GBM patients.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

VORT3DEULER (2014)

"3D Euler, Vortex Dynamics and PDE"

Read More  

SESW (2010)

Spinning in the Era of the Spinning Wheel 1400-1800

Read More  

AIRSEA (2012)

Air-Sea Exchanges driven by Light

Read More