RESEAL

Epithelial Resealing

 Coordinatore FUNDACAO CALOUSTE GULBENKIAN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Portugal [PT]
 Totale costo 1˙150˙000 €
 EC contributo 1˙150˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-11-01   -   2014-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUTO DE MEDICINA MOLECULAR

 Organization address address: AVENIDA PROF EGAS MONIZ
city: LISBOA
postcode: 1649 028

contact info
Titolo: Dr.
Nome: Margarida
Cognome: Pinto Gago
Email: send email
Telefono: -7999081
Fax: -7999082

PT (LISBOA) beneficiary 0.00
2    FUNDACAO CALOUSTE GULBENKIAN

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Mr.
Nome: José Mário
Cognome: Leite
Email: send email
Telefono: +351 214407937
Fax: +351 214407970

PT (LISBOA) hostInstitution 0.00
3    FUNDACAO CALOUSTE GULBENKIAN

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Prof.
Nome: Antonio Alfredo
Cognome: Coelho Jacinto
Email: send email
Telefono: +351 211157705
Fax: +351 214407970

PT (LISBOA) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

wound    vertebrates    simple    tissues    capacity    signalling    mechanisms    epithelial    screen    drosophila    model    repair    epithelia    embryonic    cell    mechanism    resealing    acting   

 Obiettivo del progetto (Objective)

'Epithelia have the essential role of acting as a barrier that protects living organisms and its organs from the surrounding milieu. Therefore, it is crucial for epithelial tissues to have robust ways of maintaining its integrity despite the frequent damage caused by normal cell turnover, inflammation and injury. All epithelia have some capacity to repair themselves, however, the wound-healing process differs dramatically between the developmental stage and type of tissue involved. In this project we will focus on investigating the capacity that several simple epithelial tissues have to reseal small discontinuities very rapidly and efficiently. This repair mechanism that we call epithelial resealing is based on the contraction of an actomyosin purse string in the leading edge cells around the wound margin. Epithelial resealing seems to be a fundamental repair mechanism, acting in several types of simple embryonic and adult epithelia, in both vertebrates and invertebrates. The cell biology of epithelial resealing has started to be understood but there are still many open questions and the signalling cascades that regulate this process are largely unknown. We propose to investigate epithelial resealing using a combination of genetics and high resolution live imaging. The Drosophila embryonic epithelium will be our primary model system and we will start by characterizing in detail novel genes involved in resealing that have been identified in a pilot screen previously performed in the laboratory. We will also perform a new RNAi genetic screen based on a very large collections of transgenic lines to completely unravel the signalling network that controls epithelial resealing. In order to investigate how conserved in vertebrates are the epithelial resealing mechanisms, we will establish epithelial wounding assays in zebrafish simple epithelial tissues and we will study, in this vertebrate model system, the molecular mechanisms that we will uncover using Drosophila.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

APGRAPH (2012)

Asymptotic Graph Properties

Read More  

UB-DECODED (2012)

Deciphering the ubiquitin code of the TNF receptor signalling complex and its functional role in inflammation and immunity

Read More  

ALMA (2008)

Attosecond Control of Light and Matter

Read More