PROTONICS

Mechanistic aspects of protons in hard materials for clean energy applications

 Coordinatore CHALMERS TEKNISKA HOEGSKOLA AB 

 Organization address address: -
city: GOETEBORG
postcode: 41296

contact info
Titolo: Ms.
Nome: Annika
Cognome: Hofling
Email: send email
Telefono: +46 31 7723208

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-08-01   -   2015-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB

 Organization address address: -
city: GOETEBORG
postcode: 41296

contact info
Titolo: Ms.
Nome: Annika
Cognome: Hofling
Email: send email
Telefono: +46 31 7723208

SE (GOETEBORG) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

proton    hydrogen    depends    energy    science    materials   

 Obiettivo del progetto (Objective)

'Research on 'clean energy materials' is an important and growing area in the field of materials science, much due to the need of developing cleaner and more sustainable sources of energy, which is one the the major challenges in the 21st century. The performance of alternative energy technologies depends on the properties of their component materials. For the development of next-generation devices, the discovery and optimization of new materials are critical to future breakthroughs. This depends on a better understanding of the basic science that underpins applied research, but such understanding is often lacking. In view of this lack of knowledge, this proposal aims at elucidating key fundamental properties, such as local structure, structural disorder and conduction mechanisms in two classes of energy-related materials, namely proton-conducting oxides, targeted as electrolytes for intermediate-temperature fuel cells, and 'complex' metal hydrides, targeted as media for on-board hydrogen storage. The goal is to develop an atomic-scale understanding of the proton (hydrogen) diffusion mechanism and apply this knowledge to the rational design of new materials with higher proton conductivities or more favorable hydrogen sorption properties. The primary tools to this end involve the use of neutron and synchrotron x-ray scattering techniques, available at international large-scale research facilities, and vibrational spectroscopy (Raman and infrared), available at the host organisation, Chalmers University of Technology.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DIABETES AND CANCER (2011)

The association between type 2 diabetes diagnosis and diabetes medications with risk of cancer

Read More  

DPRETB (2010)

"Exploring decaprenyl-phosphoryl ribose epimerase (DprE1) as a validated target for TB drug discovery: Assay development, high-throughput screening and search for novel DprE1 inhibitor scaffolds"

Read More  

NCRNANEURO (2010)

Non-coding RNAs in neurodegeneration

Read More