Opendata, web and dolomites

HELICOMBX

Quantum spin Hall insulator with two dimensional crystals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HELICOMBX project word cloud

Explore the words cloud of the HELICOMBX project. It provides you a very rough idea of what is the project "HELICOMBX" about.

induce    quantized    parts    attract    dichalcogenides    demonstrated    orbit    inducing    adatoms    observe    interaction    fabricate    exist    scientific    nondissipative    facilitates    mechanical    edge    exfoliation    spintronics    atomically    reversal    hall    symmetry    junctions    measured    transition    few    majorana    energy    society    ballistic    electrical    nanoelectronics    helicombx    kinds    time    preserved    consumption    dimensional    conductance    functionalized    difficult    quantum    channels    metal    limits    prepare    dissipationless    physics    construction    explore    thin    back    magnetotransport    topological    basis    spin    heterostructures    reduce    theoretical    unifying    divided    fermions    first    insulators    right    deposition    establishing    surface    josephson    endeavor    revealed    materials    electronics    nevertheless    integrate    paradigm    graphene    final    transport    scattering    condensed    discovered    advancements    crystals    signature   

Project "HELICOMBX" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 173˙076 €
 EC max contribution 173˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 173˙076.00

Map

 Project objective

Dissipationless electrical transport is a key paradigm to reduce energy consumption in our society. Recent advancements in condensed matter physics have revealed that there exist ballistic transport channels at the surface or the edge of topological insulators. These states are preserved by time-reversal symmetry and robust against back scattering. Exploiting topological insulators is therefore a major step for future nondissipative nanoelectronics. Nevertheless, such a topological phase of matter has been discovered in very few kinds of materials so far. Most of the existing materials are difficult to fabricate, which limits scientific endeavor to explore their properties and also future application. Recently, several theoretical studies have demonstrated that atomically thin graphene or other two dimensional crystals may become two dimensional topological insulators (quantum spin Hall insulators) by inducing large spin-orbit interaction. These materials are rich of novel physics and attract growing attention in their own right. Moreover, they are easy to prepare by mechanical exfoliation, which facilitates to apply them to real nanoelectronics devices. HELICOMBX is the first project which aims at establishing a basis for dissipationless electronics and spintronics with graphene and transition metal dichalcogenides and unifying physics in topological phase, spintronics and two dimensional crystals. The project is divided into three parts. First we will induce large spin-orbit interaction in graphene by adatoms deposition and heterostructures construction with transition metal dichalcogenides. Spin-orbit interaction of each system is then measured by magnetotransport measurements. Second we will exploit these functionalized two dimensional crystals for spintronics devices. As the final part, quantized conductance will be measured as a signature of the edge states, and we will integrate it into Josephson junctions to observe the Majorana fermions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HELICOMBX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HELICOMBX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More