Opendata, web and dolomites

HELICOMBX

Quantum spin Hall insulator with two dimensional crystals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HELICOMBX project word cloud

Explore the words cloud of the HELICOMBX project. It provides you a very rough idea of what is the project "HELICOMBX" about.

consumption    divided    dissipationless    induce    signature    construction    edge    majorana    atomically    insulators    spin    exist    discovered    helicombx    fermions    spintronics    basis    hall    paradigm    advancements    parts    attract    transport    dimensional    exfoliation    kinds    josephson    physics    final    surface    materials    right    inducing    theoretical    society    scientific    nanoelectronics    quantized    scattering    limits    time    deposition    electrical    explore    transition    facilitates    heterostructures    establishing    condensed    endeavor    energy    unifying    observe    symmetry    fabricate    conductance    reversal    thin    first    adatoms    topological    functionalized    channels    nevertheless    interaction    measured    quantum    back    preserved    prepare    dichalcogenides    mechanical    few    reduce    junctions    metal    demonstrated    electronics    integrate    ballistic    revealed    crystals    nondissipative    difficult    orbit    graphene    magnetotransport   

Project "HELICOMBX" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 173˙076 €
 EC max contribution 173˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 173˙076.00

Map

 Project objective

Dissipationless electrical transport is a key paradigm to reduce energy consumption in our society. Recent advancements in condensed matter physics have revealed that there exist ballistic transport channels at the surface or the edge of topological insulators. These states are preserved by time-reversal symmetry and robust against back scattering. Exploiting topological insulators is therefore a major step for future nondissipative nanoelectronics. Nevertheless, such a topological phase of matter has been discovered in very few kinds of materials so far. Most of the existing materials are difficult to fabricate, which limits scientific endeavor to explore their properties and also future application. Recently, several theoretical studies have demonstrated that atomically thin graphene or other two dimensional crystals may become two dimensional topological insulators (quantum spin Hall insulators) by inducing large spin-orbit interaction. These materials are rich of novel physics and attract growing attention in their own right. Moreover, they are easy to prepare by mechanical exfoliation, which facilitates to apply them to real nanoelectronics devices. HELICOMBX is the first project which aims at establishing a basis for dissipationless electronics and spintronics with graphene and transition metal dichalcogenides and unifying physics in topological phase, spintronics and two dimensional crystals. The project is divided into three parts. First we will induce large spin-orbit interaction in graphene by adatoms deposition and heterostructures construction with transition metal dichalcogenides. Spin-orbit interaction of each system is then measured by magnetotransport measurements. Second we will exploit these functionalized two dimensional crystals for spintronics devices. As the final part, quantized conductance will be measured as a signature of the edge states, and we will integrate it into Josephson junctions to observe the Majorana fermions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HELICOMBX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HELICOMBX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

POLINGO (2018)

The Politics of Legitimacy: Non-partisan global governance and networked INGO power in the global governance of post-war states

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More