Opendata, web and dolomites

DENDRITESONBORDERS SIGNED

Neuronal and dendritic recruitment on neocortical area borders

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DENDRITESONBORDERS project word cloud

Explore the words cloud of the DENDRITESONBORDERS project. It provides you a very rough idea of what is the project "DENDRITESONBORDERS" about.

anatomical    asymmetry    poorly    innovative    neurons    specialization    neural    segregated    link    act    leveraging    perspective    amplify    output    besides    brain    functional    societal    populations    synaptic    elaborate    relationships    answers    yield    effort    sub    performed    serving    branches    predict    local    neocortex    basic    relationship    borders    interesting    theories    scaffold    cellular    area    cortical    interpret    generate    understudied    networks    border    subunits    experimental    separable    individual    original    speak    vivo    active    operations    recruitment    mouse    computationally    flow    arbors    experiments    visual    larger    dendrites    computations    network    special    governing    developmentally    cluster    function    discovered    perform    faced    disease    striking    health    elucidated    hope    seek    ask    uncover    activity    cortex    one    electrically    scales    computational    streams    neuron    describing    dendritic    constraints    integration    relate    functionally    context    inputs    principles    scientific    neuronal    manipulate   

Project "DENDRITESONBORDERS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: London
postcode: WC1E 6BT
website: http://www.ucl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.dendrites.org
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (London) coordinator 183˙454.00

Map

 Project objective

One of the most striking features of cortex is the elaborate and electrically active dendritic arbors of its neurons. Besides serving as a scaffold for synaptic inputs, dendrites can amplify inputs and act as computational subunits within a neuron. However, the principles governing the relationship between dendritic processing and information flow through cortical networks remain to be elucidated in vivo. These basic principles must be discovered as part of the effort to generate useful theories that relate sub-cellular processes like synaptic integration to computations performed by large populations of neurons. Such theories that link different scales of neural function are an important step for the larger scientific and societal goal to interpret, predict and manipulate neuronal and cortical function in health and disease. We seek to uncover principles describing the relationships between local network activity, dendritic recruitment, and neuronal output in neocortex in vivo in the anatomical context of a visual cortical area border in the mouse brain. Cortical area borders are poorly understood, but offer unique experimental opportunities. Our goal is to exploit the functional asymmetry present at borders to perform strong experiments that ask: Do functionally similar inputs cluster in dendritic arbors? How is the recruitment of individual dendrites related to local network activity? Do different dendritic branches perform separable computational operations in vivo? Going further, we will determine if different streams of information are segregated or integrated at borders. This basic feature of cortex is interesting both computationally and developmentally. The answers will speak to the constraints faced by cortex in managing information flow and creating functional specialization. We hope the innovative approach of leveraging the unique features of an understudied anatomical special case will yield results and a perspective that is original and useful.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DENDRITESONBORDERS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DENDRITESONBORDERS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More