Opendata, web and dolomites

TreasureDrop SIGNED

Directed Evolution of Enzyme for Applied Biocatalysis at Ultrahigh Throughput in Picoliter Droplets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TreasureDrop project word cloud

Explore the words cloud of the TreasureDrop project. It provides you a very rough idea of what is the project "TreasureDrop" about.

broadly    near    bio    successfully    evolution    interface    regarding    screened    competencies    chemists    size    manner    easily    library    powerful    matthey    criteria    microfluidic    meso    synthetically    group    expertise    interestingly    hit    academic    arguable    engineering    millions    diol    limitations    biology    methodology    designed    hollfelder    evolve    clones    thereby    droplet    enzymes    potentially    correlates    sophisticated    though    dehydrogenase    continue    assays    gain    lab    paths    track    modern    catalytic    droplets    limited    mutagenesis    varying    publication    obtain    researched    view    micro    groups    biotransformation    economically    directed    fluorometric    manageable    proof    successful    rounds    desymmetrization    unite    applicable    alcohol    synthetic    biocatalysts    johnson    mutant    record    giving    furnished    selective    final    differing    highlight    desired    industrial    empirical    screen    routine    chemistry    perform    colorimetric    protein    unambiguous    few    catalysts    class    overcome   

Project "TreasureDrop" data sheet

The following table provides information about the project.

Coordinator
JOHNSON MATTHEY PLC 

Organization address
address: FARRINGDON STREET 25 5TH FLOOR
city: LONDON
postcode: EC4A 4AB
website: www.matthey.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.bioc.cam.ac.uk/hollfelder
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHNSON MATTHEY PLC UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Enzymes have established as a new class of catalysts in the field of modern synthetic chemistry and continue to gain in importance. Directed evolution is currently one of the most promising approaches aiming at enzymes with desired catalytic activities and it's potentially directly correlates with the library size that can be screened. One of the most powerful approaches to overcome these limitations is arguable the recently introduced microfluidic droplet technology; this methodology not only allows to quickly screen millions of clones in a cost effective manner, but is also broadly applicable since fluorometric as well as colorimetric assays can be used. Interestingly, even though numerous publication highlight its potential, an unambiguous evidence of its ability to provide synthetically relevant biocatalysts still needs to be furnished. In addition, access to this technology is currently limited to a few academic research groups and thus, this approach requires further implementation to evolve as an easily manageable lab routine in the near future. This project is designed to unite three competencies: i) the expertise of the Hollfelder Group in regarding micro-engineering and protein engineering in droplets, ii) the empirical knowledge of (bio)chemists at Johnson Matthey in view of economically successful industrial applications of biocatalysts and iii) the strong track record of the experienced researched to successfully solve problems at the biology/chemistry-interface. The objective of the project is to perform a proof-of-principle study by improving a well-known alcohol dehydrogenase for the selective desymmetrization of a meso-diol, thereby giving access to a synthetically sophisticated alcohol. In addition, the final aim is not only to obtain an improved mutant which allows to perform the selected biotransformation efficiently, but also a comparison of varying evolution paths differing in the criteria of hit selection between mutagenesis rounds.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TREASUREDROP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TREASUREDROP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

MetAeAvIm (2019)

The Role of the Metabolism in Mosquito Immunity against Dengue virus in Aedes aegypti

Read More  

PocketLight (2020)

Compact all-fibre nonlinear resonators as technological platform for a new generation of miniaturised light sources.

Read More