Opendata, web and dolomites

PALGLAC SIGNED

Palaeoglaciological advances to understand Earth’s ice sheets by landform analysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PALGLAC project word cloud

Explore the words cloud of the PALGLAC project. It provides you a very rough idea of what is the project "PALGLAC" about.

velocity    vastly    ice    longer    geological    subglacial    forecast    forecasting    base    regulate    models    warming    revolutionise    breakthroughs    extensive    glaciologists    inversions    palaeoglaciology    antarctic    temperatures    habitation    networks    wp2    last    highlight    sheet    former    caveats    pioneering    thickness    resolution    dynamics    retreat    greenland    actual    geochronology    climate    interact    made    flow    away    inadequately    wp3    sea    glacial    techniques    hydrological    predict    physical    sheets    spin    computational    glaciological    records    deficiencies    combine    outcomes    reflecting    geomorphological    environments    machine    palaeo    realism    forecasts    masses    campaign    timescales    leap    landforms    optimise    focussing    weather    reducing    mapping    sunlight    skill    human    wp4    trialling    encapsulated    modelled    earth    combining    data    oceans    implications    coding    1000s    learning    suitable    formulations    landform    numerical   

Project "PALGLAC" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙425˙298 €
 EC max contribution 2˙425˙298 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 2˙425˙298.00

Map

 Project objective

Ice sheets regulate Earth’s climate by reflecting sunlight away, enabling suitable temperatures for human habitation. Warming is reducing these ice masses and raising sea level. Glaciologists predict ice loss using computational ice sheet models which interact with climate and oceans, but with caveats that highlight processes are inadequately encapsulated. Weather forecasting made a leap in skill by comparing modelled forecasts with actual outcomes to improve physical realism of their models. This project sets out an ambitious programme to adopt this data-modelling approach in ice sheet modelling. Given their longer timescales (100-1000s years) we will use geological and geomorphological records of former ice sheets to provide the evidence; the rapidly growing field of palaeoglaciology.

Focussing on the most numerous and spatially-extensive records of palaeo ice sheet activity - glacial landforms - the project aims to revolutionise understanding of past, present and future ice sheets. Our mapping campaign (Work-Package 1), including by machine learning techniques (WP2), should vastly increase the evidence-base. Resolution of how subglacial landforms are generated and how hydrological networks develop (WP3) would be major breakthroughs leading to possible inversions to information on ice thickness or velocity, and with key implications for ice flow models and hydrological effects on ice dynamics. By pioneering techniques and coding for combining ice sheet models with landform data (WP4) we will improve knowledge of the role of palaeo-ice sheets in Earth system change. Trialling of numerical models in these data-rich environments will highlight deficiencies in process-formulations, leading to better models. Applying our coding to combine landforms and geochronology to optimise modelling (WP4) of the retreat of the Greenland and Antarctic ice sheets since the last glacial will provide ‘spin up’ glaciological conditions for models that forecast sea level rise.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PALGLAC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PALGLAC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HYPROTIN (2019)

Hyperpolarized Nuclear Magnetic Resonance Spectroscopy for Time-Resolved Monitoring of Interactions of Intrinsically Disordered Breast-Cancer Proteins

Read More  

SLAM4AR (2019)

Simultaneous Localization and Mapping for Augmented Reality

Read More  

U-HEART (2018)

Unbreakable HEART: a reconfigurable and self-healing isolated dc/dc converter (U-HEART)

Read More