Opendata, web and dolomites

COLMIN SIGNED

A Google Earth Approach to Understanding Collagen Mineralization

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COLMIN" data sheet

The following table provides information about the project.

Coordinator
STICHTING KATHOLIEKE UNIVERSITEIT 

Organization address
address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ
website: www.radboudumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 3˙498˙006 €
 EC max contribution 3˙498˙006 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2024-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING KATHOLIEKE UNIVERSITEIT NL (NIJMEGEN) coordinator 3˙283˙466.00
2    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) participant 214˙539.00

Map

 Project objective

Collagen mineralization in bone is one of the most crucial processes in our body as it supplies the skeleton on which we depend for support and protection. Bone’s impressive mechanical properties arise from the hierarchical organization of the organic collagen matrix that is mineralized with ultrathin, aligned inorganic crystals of carbonated hydroxyapatite. Despite its importance to the human body, relatively little is understood about collagen mineralization and how the proteins govern mineral growth with such precision. This is because the matrix development is a complex process with different stages that occur over multiple length scales and depends on many different components. I propose to obtain the first comprehensive picture of the collagen mineralization mechanism by unraveling its dynamics and structural details. It is not only of great fundamental importance, it also opens the way to the development of better biomaterials, as well as to strategies for the treatment of mineralization-related diseases. I will achieve this ambitious goal by designing a dedicated tissue engineering platform that models real bone as closely as possible, and will allow application of multiple advanced analysis techniques. These I will employ in a “Google Earth” approach, studying the process from the micrometer to the nanometer scale, combining live cell imaging and “beyond state-of-the-art” electron microscopy with chemical and biochemical analysis to reveal the details of collagen mineralization with the highest spatial, temporal and molecular resolution thus far. Exploiting my extensive expertise in the field of biomineralization and advanced electron microscopy, COLMIN will provide a major step in understanding collagen formation and mineralization, and provide insights that will help to fight bone-related diseases. The advanced multidisciplinary methodology developed here will set a new standard for the advanced analysis of bone formation and other biological processes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COLMIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COLMIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROTECHT (2020)

Providing RObust high TECHnology Tags based on linear carbon nanostructures

Read More  

Neuro-UTR (2019)

Mechanism and functional impact of ultra-long 3’ UTRs in the Drosophila nervous system

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More