Opendata, web and dolomites

RealNanoPlasmon SIGNED

Towards nanoscale reality in plasmonic hot-carrier generation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "RealNanoPlasmon" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 191˙852 €
 EC max contribution 191˙852 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 191˙852.00

Map

 Project objective

Metal nanoparticles absorb and scatter light much more than their physical size would suggest. This is caused by localized surface plasmon resonances formed upon light illumination in the nanoparticle. The plasmon resonances are characterized by collective oscillations of free electrons in the particle, but soon after its formation, typically on a femtosecond timescale, the collective plasmon mode decays via emission or via non-radiative creation of electron-hole pairs. As a result of the latter decay mechanism, high-energy electrons and holes, so-called hot carriers, are left behind. When these plasmon-induced hot carriers escape from the nanoparticle to the environment, or are induced there directly, they can be utilized for multitude of applications, such as photovoltaics, photocatalysis, or photodetection.

Similarly to the plasmon resonance, the distribution of plasmon-generated hot carriers is highly dependent on the size, shape, and composition of the nanoparticle. In recent years, atomic-scale effects on plasmon resonances have become increasingly scrutinized theoretically and computationally along with sophisticated experimental techniques. Despite this development, for plasmonic hot-carrier generation the bulk of the present understanding is based on model systems or approximative methods neglecting the underlying atomic structure. The aim of this project is to develop first-principles methods for addressing plasmonic hot-carrier generation by fully accounting for the atomic structure and elemental distribution, and shed light on atomic-scale effects on hot-carrier generation by virtue of the developed methods.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REALNANOPLASMON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REALNANOPLASMON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ERA (2020)

Epigenetic Regulation in Acinetobacter baumannii

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More