Opendata, web and dolomites

MICROPATH SIGNED

The fate and persistence of microplastics and associated pathogens in lowland rivers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MICROPATH project word cloud

Explore the words cloud of the MICROPATH project. It provides you a very rough idea of what is the project "MICROPATH" about.

storage    worldwide    quality    pathogen    mu    separated    lowland    public    time    fate    microplastic    pathogenic    characterise    appropriately    disease    hydraulic    stream    zones    drivers    health    residence    pose    transient    pioneer    spatial    streams    aquatic    models    bacteria    hot    transmission    powerful    predicting    accumulation    incorporating    ecological    heterogeneity    vector    ongoing    provides    microplastics    predictions    headwater    programs    streambed    combined    dynamic    synthesis    accurately    remobilization    impair    impacted    tame    monitoring    accumulate    mps    river    tool    birmingham    urban    size    flow    immobilization    uk    fractions    sediments    model    ecosystems    freshwater    dependent    abundant    transport    mathematical    persistence    mp    substrate    influence    prevalent    risk    site    varied    hydrodynamic    predict    diameter    mm    spots       pathogens    validation    rates    deposit    critical   

Project "MICROPATH" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 224˙933.00

Map

 Project objective

Microplastics (MPs), defined as between 1μm to 5 mm in diameter, are abundant within freshwater ecosystems and deposit and accumulate within stream transient storage areas, such as streambed sediments. Pathogenic bacteria use microplastics as a substrate, and therefore MPs can be used as a vector of disease transmission in streams. MPs can both impair the ecological quality of aquatic systems and pose a public health risk. Monitoring programs are often combined with mathematical models to assess risk for a wide range of flow conditions. A hydrodynamic model provides a powerful tool to identify high risk zones of MPs and pathogens in streams, such as hot spots of accumulation within sediments, and to predict the response to dynamic flow conditions. The overall goal of this proposal is to pioneer the development and field validation of a microplastic fate and transport model for predicting the persistence of microplastics and pathogens in streams worldwide, particularly lowland streams prevalent in the UK and Europe. The field study site is the Tame river, a headwater stream in Birmingham greatly impacted by urban influence. The project will assess three main objectives: 1) to accurately predict the fate and persistence of MPs in lowland streams by applying a hydrodynamic model that appropriately characterise their transport and varied residence time based on size, 2) to measure the spatial heterogeneity of MPs and pathogenic bacteria accumulation (separated by size fractions) in streambed sediments and important hydraulic drivers, and 3) improve predictions and fate of both MPs and pathogens by incorporating size-dependent immobilization and remobilization rates into the hydrodynamic model. The proposed project will advance a critical step for ongoing MP research by providing an advanced hydrodynamic model as a tool to improve predictions of MP and pathogen persistence in streams, and a synthesis study to advance knowledge on the fate of MPs in urban streams.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROPATH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROPATH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

THIODIV (2020)

Exploring thioalkynes potential in gold catalysis with a divergent reactivity manifold

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

DIFFER (2020)

Determinants of genetic diversity: Important Factors For Ecosystem Resilience

Read More