Opendata, web and dolomites

PI3K MODULATORS SIGNED

Identification and characterisation of new class of PI3K modulators in oncology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PI3K MODULATORS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 212˙933.00

Map

 Project objective

PI3K signalling is a critical regulator of many cellular functions including cell growth and survival, and is deregulated in cancer and auto-immunity.

This proposal is based on the concept to cause cell death by hyperactivating signalling in cancer cells above a tolerable threshold. This idea has been previously proposed for other kinases, but no small-molecule activators were available to formally test the idea.

This proposal focuses on activators of the leukocyte-enriched PI3Kd, an isoform of PI3K that is involved in immune regulation and haematological malignancies.

The 3 key objectives and their approaches are:

1. To discover and characterise small-molecule PI3Kd activators. This will be achieved using a combination of virtual screening and high throughput screening. 2. To understand the mechanism of PI3Kd activation. This enables understanding of how these activators function, and provides structural data that can be used for structure-based design and compound improvement. This will be achieved using structural biology (HDX-MS and crystallography), biochemical (lipid kinase) and biophysical (binding) assays. 3. To determine the activity of PI3Kd activators in haematopoietic malignancies. In order to use PI3Kd activators in cancer therapy, it is critical to determine the conditions under which hyperactivation of PI3Kd results in cancer cell death. This will be achieved with a panel of B and T-cell lymphoma cell lines using cell viability assays under different conditions.

These objectives integrate my expertise in compound screening, molecular modelling and compound design with the world-leading expertise of the Host Lab in PI3K signalling, cancer biology and drug development. This proposal aims to make breakthroughs in understanding PI3K signalling, its exploitation in drug development and in cancer-therapy. This will be a key turning point in my scientific career and facilitate PI3K drug development collaborations of the Host Lab with the pharmaceutica.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PI3K MODULATORS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PI3K MODULATORS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MOSAiC (2019)

Multimode cOrrelations in microwave photonics with Superconducting quAntum Circuits

Read More  

EGeoCC (2019)

Ethnic geography and civil conflict

Read More  

DOC-Stim (2020)

Communication and rehabilitation for people with Disorders of consciousness via Brain-Computer Interfaces

Read More