Opendata, web and dolomites

TRIDOS SIGNED

Targeted Radiotherapy Internal Dosimetry: A platform for individualized patient dosimetry and radiobiological assessment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "TRIDOS" data sheet

The following table provides information about the project.

Coordinator
FUNDACION INSTITUTO DE INVESTIGACION SANITARIA DE SANTIAGO DE COMPOSTELA 

Organization address
address: TRAVESA DA CHOUPANA
city: SANTIAGO DE COMPOSTELA
postcode: 15706
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 172˙932 €
 EC max contribution 172˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACION INSTITUTO DE INVESTIGACION SANITARIA DE SANTIAGO DE COMPOSTELA ES (SANTIAGO DE COMPOSTELA) coordinator 172˙932.00

Map

 Project objective

In radiation therapy (RT), which is used in more than 50% of cancer treatments, the dose delivered to the tumour/normal tissue determines tumour control and toxicity. Targeted radionuclide therapy (TRNT) is an effective growing type of RT in which radiative compounds with high tumour affinity are administered to patients. While in external RT there are well-defined methodologies to accurately determine the dose, this is not the case in TRNT. Traditionally, TRNT dosimetry is obtained from simple biokinetic models, developed many years ago, and non-individualized dosimetric factors calculated in phantoms. This dosimetry is inaccurate and not patient individualized. The recent European council directive 2013/59/Euratom, transposed on Feb 2018, has clearly highlighted the need to accurately report all doses from radiopharmaceutical procedures, hardening the criteria of previous regulations. The objective of this project is to develop methodologies for the accurate, individualized dosimetry and radiobiological assessment of TRNT, shifting from the current paradigm of empirical treatment to the era of personalized treatment. This will be achieved by the following actions: a) adaptation of Monte Carlo codes for patient’s internal dose calculation, considering novel biokinetic models of the drug biodistribution; b) development and implementation of radiobiological algorithms to evaluate tumour control/toxicity; and c) implementation of a platform useful for the clinical practice, incorporating these models and allowing easy handling and user interactivity. To successfully address this, the researcher experience will be combined with the host organisation (FIDIS) capabilities, a leading biomedical research institute where the supervisor is already involved in TRNT research. FIDIS will also provide clinical data for the models development/validation, an interdisciplinary environment and a training program greatly contributing to re-enforce the researcher professional maturity

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRIDOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRIDOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MOSAiC (2019)

Multimode cOrrelations in microwave photonics with Superconducting quAntum Circuits

Read More  

EGeoCC (2019)

Ethnic geography and civil conflict

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More