Opendata, web and dolomites

STRomA SIGNED

Novel Matrix Stiffness-regulated Genes in Lymphangiogenesis and Angiogenesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STRomA project word cloud

Explore the words cloud of the STRomA project. It provides you a very rough idea of what is the project "STRomA" about.

integrally    fundamentally    modulate    vessel    inside    time    cells    diseases    recognize    composition    regulating    lymphangiogenesis    group    independent    cell    transgenic    differ    fluorescent    intracellular    similarly    dynamics    blood    implications    hypothesize    imaging    mechanism    bec    shown    physical    first    performed    adhesions    significantly    surrounding    generate    disease    family    pivotal    tissues    vascular    ecs    techniques    stimuli    regulated    lymphatic    analyze    stiffness    stiff    signaling    action    protein    molecule    regulatory    preliminary    ultimately    cultured    matrices    controls    soft    mechanical    biological    models    endothelial    3200    angiogenesis    suggesting    matrix    vitro    extracellular    treatment    angiogenic    interestingly    becs    lymph    actin    ecm    microscope    mouse    cytoskeletal    forces    differently    understand    sensor    ec    mechanotransduction    translate    rna    sequencing    live    last    visualize    tree    differential    lecs    cgmp    me    leader    edema    genes    predominantly   

Project "STRomA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF 

Organization address
address: Martinistrasse 52
city: HAMBURG
postcode: 20251
website: www.uke.uni-hamburg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 162˙806 €
 EC max contribution 162˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF DE (HAMBURG) coordinator 162˙806.00

Map

 Project objective

Endothelial cells (ECs) recognize and respond to mechanical forces through their cell-cell and cell-matrix adhesions and translate physical stimuli into biological responses in a process called mechanotransduction. The composition and mechanical properties of the extracellular matrix (ECM) differ across the vascular tree, in its surrounding tissues and in development and diseases, such as edema formation. I have recently shown for the first time that ECM stiffness fundamentally controls lymphangiogenesis. I hypothesize that changes in ECM stiffness are a key regulatory mechanism of angiogenic processes in development and disease. A comprehensive analysis of novel ECM stiffness-regulated genes is pivotal to understand these processes integrally. In a preliminary study, I have performed differential RNA sequencing of blood (B) and lymphatic (L) ECs cultured on soft and stiff matrices. 3200 genes were regulated similarly in BECs and LECs in response to changes in matrix stiffness. Interestingly, the same number of genes was differently regulated. In the next two years, I will study the role of selected genes in lymphangiogenesis and angiogenesis in vitro and in transgenic mouse models with state-of-the-art microscope and live imaging techniques. First, I will analyze an actin-regulating protein family that is significantly regulated by matrix stiffness in both, BEC and LECs, suggesting a more general role in lymphangiogenesis and angiogenesis by regulating cytoskeletal dynamics. Second, I will study a molecule, which is involved in intracellular cGMP signaling and is predominantly regulated in LECs, suggesting a more specific role in lymphangiogenesis. Last, I will generate an in vitro fluorescent stiffness sensor to live-visualize changes in stiffness inside the EC. Ultimately, the proposed action can provide novel targets to modulate lymph and blood vessel formation with implications for edema treatment and will support me to become an independent group leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STROMA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STROMA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More