Opendata, web and dolomites

ENVERESP SIGNED

Crosstalk between nuclear envelope and DNA Damage Response: Role of nucleoporin TPR in the maintenance of genomic integrity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ENVERESP project word cloud

Explore the words cloud of the ENVERESP project. It provides you a very rough idea of what is the project "ENVERESP" about.

nucleoporin    phosphorylated    oncogenes    pore    oncogenesis    ependymomas9    condensation    network    deregulated    damaged    raf    found    mechanistic    optimize    receives    chromatin    nuclear    domain    domains    stability    human    tumor    their    serves    atm    intracranial    protein    dna    technologies    body    each    replication    cell    vitro    thousands    mechanism    region    previously    mutation    genes    development2    kinase    cancer8    cells    barrier    tpr    fused    principles    interestingly    maintenance    lesions    signaling    amplification    posed    mutagenesis    extensive    threats    ing    genomics    checkpoint    atr    repair    damage    proteins    employing    ddr    silac    genome    genetics    solid    binding    promoter    expression    leads    critical    cancer    responsive    molecular    types    met    proteomic    networks    proto    profiling    prevents    counteract    microscopy    imaging    treatments    electron    signal    proteomics    genesis    biological    tumors    significantly    kinases    therapies    translocated    terminal    envelope    linked    pediatric    day    detect    patients    breast    shorter    progression    survival    liver   

Project "ENVERESP" data sheet

The following table provides information about the project.

Coordinator
IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE 

Organization address
address: VIA ADAMELLO 16
city: MILANO
postcode: 20139
website: www.ifom-firc.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 168˙277 €
 EC max contribution 168˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE IT (MILANO) coordinator 168˙277.00

Map

 Project objective

Each cell in the human body receives thousands of DNA lesions per day. To counteract threats posed by DNA damage, cells have evolved an integrated signaling network called the DNA-damage response (DDR). This mechanism allows cells to detect DNA lesions, signal their presence and promote their repair. Mutation of DDR genes, which serves as a biological barrier against tumor progression, leads to cancer development2. A large-scale proteomic analysis of proteins phosphorylated in response to DNA damage by checkpoint kinases ATM and ATR identified extensive protein networks responsive to DNA damage. Interestingly, among the proteins identified to be phosphorylated upon DNA damage were several nuclear pore complex factors including nucleoporin Translocated Promoter Region (TPR)5. TPR was previously linked to cancer since its N-terminal domain has been found fused with the protein kinase domains of various proto-oncogenes such as RAF and MET resulting in human solid tumors. TPR expression level was found deregulated in many types of human tumors such as breast and liver cancer8. Amplification of TPR was also significantly associated with a shorter survival of patients with pediatric intracranial ependymomas9. All these findings support a critical role for TPR in the mechanism of oncogenesis. By employing state-of-the-art proteomics (SILAC), genetics (in vitro mutagenesis), genomics (DNA binding profiling) and imaging (electron microscopy) technologies we will investigate how TPR prevents tumor genesis via its role in the DDR network coordinating DNA repair, DNA replication and chromatin condensation with the nuclear envelope upon DNA damage. Providing mechanistic insight into the role of TPR in DDR and the maintenance of genome stability will not only contribute to our understanding of molecular principles of response to damaged DNA, but will allow us to optimize existing cancer treatments and design new molecular targeted therapies in the future.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENVERESP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENVERESP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NarrowbandSSL (2019)

Development of Narrow Band Blue and Red Emitting Macromolecules for Solution-Processed Solid State Lighting Devices

Read More  

INFANTPATTERNS (2019)

Development of kinematic and muscle patterns in preterm infants

Read More  

UMMs (2019)

Unifying Monitoring Models of Verbal Monitoring.

Read More