Opendata, web and dolomites

Report

Teaser, summary, work performed and final results

Periodic Reporting for period 2 - KidsAP (The artificial pancreas in children aged 1 to 7 years with type 1 diabetes)

Teaser

Type 1 diabetes is one of the most common chronic diseases in children with a rapid increase in the number of cases, particularly in young children. Type 1 diabetes is associated with life-long dependency on insulin administration to control glucose levels. Poor glucose...

Summary

Type 1 diabetes is one of the most common chronic diseases in children with a rapid increase in the number of cases, particularly in young children. Type 1 diabetes is associated with life-long dependency on insulin administration to control glucose levels. Poor glucose control leads to diabetes complications such as disease of the eyes, heart and kidneys. Poor glucose control is also associated with brain changes in young children. Episodes of very low glucose levels may be life-threatening and are a major complication.

The artificial pancreas addresses the problem of low and high glucose levels by delivering insulin below and above pre-set amounts according to real-time sensor glucose levels. The artificial pancreas combines a glucose sensor, insulin pump and control algorithm on an android phone. This technology promises to transform the management of type 1 diabetes, but evidence supporting its use during free-living in young children is missing. This project evaluates the biomedical, psychosocial, and cost-effectiveness of this novel, individualised, artificial pancreas in young children aged 1 to 7 years with type 1 diabetes.

Initially, a pilot study was conducted in 7 clinical centres in Europe. 24 young children aged 1 to 7 years with type 1 diabetes were recruited into the clinical study and wore the artificial pancreas for two periods of 3 weeks, once using standard strength insulin and once using diluted insulin. The results of the study were published in Diabetes Care (https://doi.org/10.2337/dc18-1881). Following the pilot study, the main outcome study will be conducted in 7 clinical centres in Europe. 72 children aged 1 to 7 years with type 1 diabetes will be treated over two four-month periods, once using the artificial pancreas, and once using sensor-augmented insulin pump therapy. The total length of the study will be 11 months. Quality of life will be assessed and semi-structured interviews conducted to understand the impact on daily life. A health technology assessment will be carried out to support reimbursement.

The project will optimise the artificial pancreas and spearhead system-wide improvements in health care quality and health outcomes in young children with type 1 diabetes who live with the disease the longest. By improving therapeutic outcomes, the project will change clinical practice and influence national and international treatment guidelines making the artificial pancreas widely acceptable as the state-of-the-art treatment modality in this population.

Work performed

The pilot clinical study (KidsAP01) has been completed. The study compared the use of diluted and standard strength insulin in the artificial pancreas in children aged 1 to 7 years with type 1 diabetes. The study also assessed the safety, efficacy and utility of the artificial pancreas in this age group. The primary manuscript was published in Diabetes Care (https://doi.org/10.2337/dc18-1881), a lay summary is available on the KidsAP project website (http://kidsap.mrl.ims.cam.ac.uk). The results of the pilot study informed the design of the main outcome study.

Final results

The project advances the state-of-the-art both technologically and clinically whilst mitigating against risks through extensive clinical and engineering experience and expertise of the collaborators.

The complications associated with hyperglycaemia and hypoglycaemia in type 1 diabetes carry high societal and medical costs. Educational interventions in youth are failing and immunotherapy struggles in clinical translation. Nearly 1 in 10 admissions to hospital of children with diabetes is a result of a hypoglycaemic episode. Diabetes complications lead to increased risk of mortality in type 1 diabetes by 130% compared to 35% in type 2 diabetes.

The 24/7 use of the Artificial Pancreas in the home/outpatient settings in young children is groundbreaking. No outpatient studies in this population cohort have been reported. Remote functionality and alarming has been studied but not connected to industry-standard cloud infrastructure or allowing parents/ guardians/ carers to receive alarms during closed-loop use. The free-living use of the Artificial Pancreas in the home settings has been reported in children aged 6 to 12 years (children aged 10 years and older and adults by the Consortium members (CAM, GRA, and LUX) over 2 days to 3 weeks.) The main KidsAP02 study will evaluate the Artificial Pancreas in the home settings over longer clinically desirable duration.

We will reduce the risk of hypoglycaemia and improve long term outcomes through the use of the closed-loop system and remote alarm functionality. The two interlinked clinical investigations will provide a deeper understanding of effectiveness, efficacy, safety beyond the state-of-the-art of the current knowledge surrounding the Artificial Pancreas and glucose control in young children.

Website & more info

More info: http://kidsap.mrl.ims.cam.ac.uk/.