Opendata, web and dolomites

GrapheneBiosensor SIGNED

Electrochemical Graphene Sensors as Early Alert Tools for Algal Toxin Detection in Water

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GrapheneBiosensor project word cloud

Explore the words cloud of the GrapheneBiosensor project. It provides you a very rough idea of what is the project "GrapheneBiosensor" about.

limit    exposure    massive    sophisticated    purpose    rapid    intrahepatic    bodies    mu    responsible    prolonged    acute    anthropogenic    episodes    solutions    laboratory    humans    material    aqueous    performance    hplc    bio    world    portable    fit    consuming    sources    potent    area    expensive    ing    conductivity    urban    animals    surface    frequently    organization    electrical    contained    chromatography    immunosensors    alternatives    algae    assigned    microcystin    confirmed    time    mc    death    had    spectrometry    candidate    manufacturing    assays    sensitive    microcystins    phosphatases    electrochemical    agricultural    broad    1998    concentration    biosensors    damage    provisional    detect    followed    ms    graphene    functionalization    monitoring    drinking    worldwide    active    2a    situ    potentials    mass    warming    eutrophication    quality    probably    ppl    poisonings    blue    health    cyanobacteria    times    pp2a    toxin    immune    blooms    detergents    toxic    hemorrhage    demanding    electrochemically    harmful    physical    occurrence    waste    liver    algal    inhibiting    off    conventional    ease    lr    guideline    instruments    global    run    biochemical    protein    liquid    prevent    skills    water   

Project "GrapheneBiosensor" data sheet

The following table provides information about the project.

Coordinator
SWANSEA UNIVERSITY 

Organization address
address: SINGLETON PARK
city: SWANSEA
postcode: SA2 8PP
website: www.swan.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-26   to  2019-11-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SWANSEA UNIVERSITY UK (SWANSEA) coordinator 195˙454.00

Map

 Project objective

Episodes of harmful blue algae blooms and the associated algal toxin microcystin-LR (MC-LR) occur frequently in bodies of water worldwide as consequences of eutrophication resulting from anthropogenic activities such as agricultural run-off, urban waste, and manufacturing of detergents and global warming. It had been confirmed that microcystins were responsible for some poisonings of animals and humans where water sources contained toxic cyanobacteria blooms. Microcystins were potent and specific in inhibiting protein phosphatases 1 and 2A (PPl, PP2A). Acute or prolonged exposure to microcystins would cause liver damage, followed by a massive intrahepatic hemorrhage and probably leading to death. In 1998, the provisional guideline concentration limit of 1 μg/L MC-LR in drinking water was assigned by the World Health Organization (WHO). The development of reliable methods for monitoring MC-LR in water resources is of great interest to determine the occurrence and to prevent exposure to the toxin. Several methods have been developed to detect MC-LR, such as high-performance liquid chromatography/mass spectrometry (HPLC/MS) , bio-, biochemical- and immune-assays, which require long processing times, sophisticated instruments, complex procedures, or high processing cost and are in general used in the laboratory, not in situ. A sensitive, specific, simple, and rapid method for monitoring MC-LR could help to prevent exposure to the toxin. The unique physical and electrochemical properties (e.g., high electrical conductivity, ease of functionalization, high electrochemically active surface area, and broad range of working potentials in aqueous solutions) of graphene make them a candidate material for developing novel and fit-for-purpose electrochemical biosensors/immunosensors as alternatives to the time-consuming, expensive, non-portable and often skills-demanding conventional methods of analysis involved in water quality assessment.

 Publications

year authors and title journal last update
List of publications.
2018 Wei Zhang, Mike B. Dixon, Christopher Saint, Kar Seng Teng, Hiroaki Furumai
Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art
published pages: 1233-1245, ISSN: 2379-3694, DOI: 10.1021/acssensors.8b00359
ACS Sensors 3/7 2020-02-27
2018 Wei Zhang, Baoping Jia, Hiroaki Furumai
Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-28959-w
Scientific Reports 8/1 2020-02-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAPHENEBIOSENSOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAPHENEBIOSENSOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

AsymmFlow (2020)

Go with the continuous flow: Asymmetric Synthesis of Bioactive Alkaloids by Multistep Continuous-Flow Processes

Read More  

STMICRO (2020)

Space-time visualization of microelectronic chip operation with femtosecond electron microscopy

Read More