Opendata, web and dolomites

Enhancer3D SIGNED

Regulatory genomics during Drosophila embryogenesis: dissecting enhancer-promoter interactions

Total Cost €


EC-Contrib. €






Project "Enhancer3D" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙770˙375 €
 EC max contribution 1˙770˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2023-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

In eukaryotes, the complex regulation of temporal- and tissue-specific gene expression is controlled by the binding of transcription factors to enhancers, which in turn interact with the promoter of their target gene(s) via the formation of a chromatin loop. Despite their importance, the properties governing enhancer function and enhancer-promoter loops in the context of the three-dimensional organisation of the genome are still poorly understood. My recent work suggests that (i) developmental genes are often regulated by multiple enhancers, sometimes located at great linear distances, (ii) the spatio-temporal activity of a large fraction of those enhancers remains unknown, (iii) enhancer-promoter interactions are usually established before the target gene is expressed and are largely stable during embryogenesis, and (iv) stable interactions seem to be associated with the presence of paused RNA Polymerase II at the promoter before gene activation. Building upon these results, we propose to advance to the next level in the dissection of enhancer-promoter interaction functionality in the context of Drosophila embryogenesis. Specifically, we will address three important questions: (i) What determines the specificity of promoter-enhancer interactions in a complex genome? (ii) Are enhancer-promoter interactions tissue-specific, and what are the drivers of this specificity? (iii) Are all enhancer-promoter interactions functional, and how does the activity of an enhancer relate to the expression of the gene it interacts with? To this end, my group will apply an interdisciplinary approach, combining state-of-the-art methods in genetics and genomics, including novel single-cell techniques, using Drosophila embryogenesis as a model system. Our results will provide a unique view of the functionality of enhancer-promoter interactions in a developing embryo, a significant step towards understanding the link between chromatin organisation and transcription regulation.


year authors and title journal last update
List of publications.
2019 Yad Ghavi-Helm
Functional Consequences of Chromosomal Rearrangements on Gene Expression: Not So Deleterious After All?
published pages: , ISSN: 0022-2836, DOI: 10.1016/j.jmb.2019.09.010
Journal of Molecular Biology 2020-01-28
2019 Charlotte Moretti, Isabelle Stévant, Yad Ghavi-Helm
3D genome organisation in Drosophila
published pages: , ISSN: 2041-2649, DOI: 10.1093/bfgp/elz029
Briefings in Functional Genomics 2020-01-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENHANCER3D" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENHANCER3D" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

SPA4AstroQIT (2019)

Broadband Quantum-Limited Parametric Amplifier for Astronomy and Quantum Information Technology

Read More  

TALNET (2020)

Transparent Aluminium Networks

Read More