Opendata, web and dolomites

SPLICEOSACT SIGNED

Biochemical and CryoEM studies of spliceosome activation.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SPLICEOSACT project word cloud

Explore the words cloud of the SPLICEOSACT project. It provides you a very rough idea of what is the project "SPLICEOSACT" about.

centre    microscopy    technological    mechanistic    mrnas    ligation    activation    rna    solved    assembles    spliceosome    created    maturation    reactions    site    host    novo    successive    active    excitement    em    regarding    unraveling    snrnps    catalysis    discrete    complexes    group    removal    extensive    stabilization    mrna    atomic    recruited    stepwise    fundamental    u6    correct    consisting    resolution    transition    uses    compositional    single    captured    filling    gigantic    visualize    catalytic    eukaryotic    yeast    formed    biochemical    exons    catalyzed    undergoes    ribonucleoprotein    lost    cryoem    concomitant    pre    introns    biological    u4    reactive    conformational    details    groups    molecular    characterization    spliceosomes    splicing    questions    manner    gap    u2    de    thanks    community    scarcity    positioning    perform    particle    structures    consists    assembled    competent    cycle    earlier    u1    transesterification    electron    series    stages    u5    intron    combination    catalytically   

Project "SPLICEOSACT" data sheet

The following table provides information about the project.

Coordinator
UNITED KINGDOM RESEARCH AND INNOVATION 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2021-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNITED KINGDOM RESEARCH AND INNOVATION UK (SWINDON) coordinator 195˙454.00
2    MEDICAL RESEARCH COUNCIL UK (SWINDON) coordinator 0.00

Map

 Project objective

Pre-mRNA splicing is a fundamental maturation step of eukaryotic mRNAs that consists of the removal of introns and the concomitant ligation of exons by two successive transesterification reactions. This complex biological process is catalyzed by the spliceosome, a gigantic ribonucleoprotein particle that assembles de novo on each intron and uses a single RNA-based active site to perform both reactions. The spliceosome is composed of five snRNPs (U1, U2, U4, U5, U6) that are recruited to pre-mRNAs in a stepwise manner. When a pre-catalytic spliceosome, consisting of all five snRNPs, is formed on a pre-mRNA it has no pre-existing active site and undergoes extensive compositional and conformational changes to become “catalytically competent”. During this transition, two snRNPs (U1 and U4) are lost and several new factors are recruited, ensuring the formation and stabilization of the active site as well as the correct positioning of the pre-mRNA’s reactive groups in the catalytic centre. Thanks to recent technological advances in Electron Microscopy (EM), a series of cryoEM structures of fully assembled “active” spliceosomes at atomic resolution have been solved in the host group and elsewhere, in the past two years. These structures, which have created much excitement in the RNA community, visualize the spliceosome during each step of the catalytic cycle and allow a mechanistic understanding of catalysis. However, due to the scarcity of high-resolution information on earlier complexes, many questions remain regarding spliceosome activation. My project aims at filling a gap in our understanding of pre-mRNA splicing by unraveling the molecular details of spliceosome activation. To that end, I will use a combination of biochemical characterization and cryoEM to study yeast spliceosome captured at discrete early stages of activation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPLICEOSACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPLICEOSACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More