Opendata, web and dolomites

HDEM SIGNED

High Definition Electron Microscopy: Greater clarity via multidimensionality

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HDEM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT ANTWERPEN 

Organization address
address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000
website: www.ua.ac.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN BE (ANTWERPEN) coordinator 1˙500˙000.00
2    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) participant 0.00

Map

 Project objective

Atomic resolution microscopy relies on beams of energetic electrons. These beams quickly destroy fragile materials, making imaging them a major challenge. I have recently developed a new approach that provides the greatest possible resolving power per electron. The method provides both double resolution and excellent noise rejection, via multidimensional data acquisition and analysis. Here I propose to couple the new method with breakthroughs in high speed cameras to achieve unprecedented clarity at low doses, almost guaranteeing major advances for imaging beam sensitive materials. Proof of principle will be achieved for biochemical imaging using the easy to handle, commercially available GroEL chaperone molecule. We will combine our enhanced imaging capabilities with the averaging methods recently recognized by the Nobel prize in chemistry for imaging biomolecules at ultra low doses. After proving our low dose capabilities we will apply them to imaging proteins of current interest at greater resolution. Similar techniques will be used for fragile materials science samples, for instance metal organic framework, Li ion battery, 2D, catalyst and perovskite solar cell materials. Furthermore the same reconstruction algorithms can be applied to simultaneously acquired spectroscopic images, allowing us to not only locate all the atoms, but identify them. The properties of all materials are determined by the arrangement and identity of their atoms, and therefore our work will impact all major areas of science, from biology to chemistry and physics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HDEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HDEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

Neurovulnerability (2019)

Molecular mechanisms underlying selective neuronal death in motor neuron diseases

Read More