Opendata, web and dolomites

MATTER SIGNED

MAcroscopic quantum Transport maTERials by nanoparticle processing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MATTER" data sheet

The following table provides information about the project.

Coordinator
LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. 

Organization address
address: HELMHOLTZSTRASSE 20
city: DRESDEN
postcode: 1069
website: www.ifw-dresden.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙999˙664 €
 EC max contribution 1˙999˙664 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2025-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. DE (DRESDEN) coordinator 1˙999˙664.00

Map

 Project objective

Ever since the discovery of topological surface states in three-dimensional (3D) topological insulators (TI), this fascinating physics has thrilled scientists. While arguable the transport properties of 3D TIs are of utmost importance for potential applications, they are extremely difficult to characterize, yet utilize for devices. The reason is that transport in those materials is always dominated by bulk carriers. Within this proposed research project, I will overcome the problem of bulk carrier domination conceptually by a nanoparticle-based materials’ design of interrupted early stage sintering. By this interrupted early stage sintering approach, I compact 3D TI nanoparticles at mild temperature and low pressure. The obtained highly porous macroscopic sample features a carrier density of the surface states in the order of 1018 cm-3, hence in a comparable order of magnitude as the bulk carrier density. Further, the interruptedly sintered nanoparticles impose energetic barriers for the transport of bulk carriers (hopping transport), while the connected surfaces of the nanoparticles provide a 3D percolation path for surface carriers. Within the preliminary work, my group tuned interruptedly sintered nanoparticles into a transport regime completely dominated by the surface states. Within this project, nanoparticle-based macroscopic 3D TI materials will be developed towards test structures for devices. Their properties will be tailored by the nanoparticle synthesis (Objective 1) and the materials processing of interrupted early stage sintering (Objective 2). This is complemented by an in-depth characterization of the transport as well as spectroscopic properties and data modelling (Objective 3). My group will use this know-how for the fabrication of test devices (Objective 4). This combination will provide the first macroscopic quantum transport devices that utilize the unique electronic properties of surface states, overcoming the problem of bulk carrier domination

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MATTER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MATTER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MuFLOART (2018)

Microbiological fluorescence observatory for antibiotic resistance tracking

Read More  

LapIt (2019)

Making AML treatment a clinical reality: A novel anti-IL7 receptor antibody to deliver Lap to 5LO positive cells

Read More  

PROTECHT (2020)

Providing RObust high TECHnology Tags based on linear carbon nanostructures

Read More