AMPRO

Advanced Electronic Materials and Devices through Novel Processing Paradigms

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙497˙798 €
 EC contributo 1˙497˙798 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Dr.
Nome: Thomas
Cognome: Anthopoulos
Email: send email
Telefono: +44 207 594 6669

UK (LONDON) hostInstitution 1˙497˙798.00
2    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 207 594 1418

UK (LONDON) hostInstitution 1˙497˙798.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

precursor    area    oxide    nano    fabrication    combine    sized    dielectrics    phototransistors    combined    organic    patterning    explored    materials    oxides    chemical    dyes    transistors   

 Obiettivo del progetto (Objective)

'I propose a structured multidisciplinary research programme that seeks to combine advanced materials, such as metal oxides and organics, with novel fabrication methods to develop devices for application in: (1) large area electronics, (2) integrated nanoelectronics and (3) sensors. At the heart of this programme lies the development of novel oxide semiconductors. These will be synthesised from solution using precursors. Chemical doping via physical blending will be explored for the tuning of the electronic properties of these compounds. This simple approach will enable the rapid development of a library of materials far beyond those accessible by traditional methods. Oxides will then be combined with inorganic/organic dielectrics to demonstrate low power transistors. Ultimate target for application area (1) is the development of transistors with hole/electron mobilities exceeding 20/200 cm^2/Vs respectively. For application area (2) I will combine the precursor formulations with advanced scanning thermochemical nanolithography. A heated atomic force microscope tip will be used for the local chemical conversion of the precursor to oxide with sub-50 nm resolution. This will enable patterning of nanostructures with desirable shape and size. Sequential patterning of semi/conductive layers combined with SAM dielectrics would enable fabrication of nano-sized devices and circuits. For application area (3), research effort will focus on novel hybrid phototransistors. Use of different light absorbing organic dyes functionalised onto the oxide channel will be explored as a mean for developing high sensitivity phototransistors and full colour sensing arrays. Organic dyes will also be combined with nano-sized transistors to demonstrate integrated nano-scale optoelectronics. The unique combination of bottom-up and top-down strategies adopted in this project will lead to the development of novel high performance devices with a host of existing and new applications.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

Q-MAC (2013)

Frontiers in Quantum Materials Control

Read More  

CBCD (2011)

Understanding the basis of cerebellar and brainstem congenital defects: from clinical and molecular characterisation to the development of a novel neuroembryonic in vitro model

Read More  

HEP (2013)

"Epilepsies of the temporal lobe: emergence, basal state and paroxysmal transitions"

Read More