BETAREGENERATION

Induction of Insulin-producing beta-cells Regeneration in vivo

 Coordinatore INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101109
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

 Organization address address: 101 Rue de Tolbiac
city: PARIS
postcode: 75654

contact info
Titolo: Dr.
Nome: Patrick
Cognome: Collombat
Email: send email
Telefono: +33 4 92076416
Fax: +33 4 92076442

FR (PARIS) hostInstitution 1˙500˙000.00
2    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

 Organization address address: 101 Rue de Tolbiac
city: PARIS
postcode: 75654

contact info
Titolo: Mr.
Nome: Dominique
Cognome: Nobile
Email: send email
Telefono: 33491827000
Fax: 33491827048

FR (PARIS) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

patients    cells    mice    mechanisms    converted    vivo    alpha    beta    cell    reverse    mouse    human    mediated    diabetes    adult    diabetic    regeneration    induced   

 Obiettivo del progetto (Objective)

'Diabetes has become one of the most widespread metabolic disorders with epidemic dimensions affecting almost 6% of the world’s population. Despite modern treatments, the life expectancy of patients with Type 1 diabetes remains reduced as compared to healthy subjects. There is therefore a need for alternative therapies. Towards this aim, using the mouse, we recently demonstrated that the in vivo forced expression of a single factor in pancreatic alpha-cells is sufficient to induce a continuous regeneration of alpha-cells and their subsequent conversion into beta-like cells, such converted cells being capable of reversing the consequences of chemically-induced diabetes in vivo (Collombat et al. Cell, 2009).

The PI and his team therefore propose to further decipher the mechanisms involved in this alpha-cell-mediated beta-cell regeneration process and determine whether this approach may be applied to adult animals and whether it would efficiently reverse Type 1 diabetes. Furthermore, a major effort will be made to verify whether our findings could be translated to human. Specifically, we will use a tri-partite approach to address the following issues: (1) Can the in vivo alpha-cell-mediated beta-cell regeneration be induced in adults mice? What would be the genetic determinants involved? (2) Can alpha-cell-mediated beta-cell regeneration reverse diabetes in the NOD Type 1 diabetes mouse model? (3) Can adult human alpha-cells be converted into beta-like cells?

Together, these ambitious objectives will most certainly allow us to gain new insight into the mechanisms defining the identity and the reprogramming capabilities of mouse and human endocrine cells and may thereby open new avenues for the treatment of diabetes. Similarly, the determination of the molecular triggers implicated in the beta-cell regeneration observed in our diabetic mice may lead to exciting new findings, including the identification of “drugable” targets of importance for human diabetic patients.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MULTIWAVE (2012)

Multidisciplinary Studies of Extreme and Rogue Wave Phenomena

Read More  

PREMADIX (2013)

Preparing market introduction of DN-X-PRO - a breakthrough solution for real-time studies of DNA-protein interactions at single-molecule resolution

Read More  

MUSLOND (2013)

"Music in London, 1800-1851"

Read More