DISEASENVIRON

GENETICS OF TEMPERATURE MODULATION OF PLANT IMMUNITY

 Coordinatore UNIVERSITAT DE BARCELONA 

 Organization address address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Gutierrez
Email: send email
Telefono: 34934033585
Fax: 34934489434

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-12-03   -   2016-12-02

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAT DE BARCELONA

 Organization address address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Gutierrez
Email: send email
Telefono: 34934033585
Fax: 34934489434

ES (BARCELONA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

genetic    mechanisms    defense    pathogen    immune    plant    studying    plants    regulation    natural    temperature    molecular    evolution    pathogens    immunity    incompatibilities    disease    activation    co    potentially   

 Obiettivo del progetto (Objective)

'During their life cycle, plants are exposed to microbes in soil and leaf surfaces that can cause disease and result in crop losses and pathogen spread. Even though chemical treatment and genetic engineering have been successfully applied to combat disease, it is increasingly being recognized that understanding the natural co-evolution of plants with pathogens will provide new leads for pest regulation and, potentially, anticipate evolving pathogen strategies to evade recognition and cause disease. This new perspective requires understanding fundamental questions in the co-evolution between plants and pathogens using a combined genetic and molecular approach, and studying natural populations of plants that may be locally adapted. During the co-evolution with pathogens, plants have evolved mechanisms to distinguish foe from a benign or potentially beneficial microorganism and to induce appropriate defense reactions and anti-microbial molecules. However, activation of pathogen defense is likely costly for the plant as evidenced in growth defects exhibited by plants with constitutive activation of immune responses. As consequence, a proper balance between growth, reproduction and immune response had to be achieved during evolution, leading to an inducible immune system influenced by environmental fluctuations. The recent discovery of temperature-dependent hybrid incompatibilities in Arabidopsis thaliana allows at identifying genetic components at the intersection between plant immunity and the environment. Studying the molecular and genetic basis for such incompatibilities should provide novel insights into mechanisms underlying temperature regulation of plant immunity and local adaptation shaping genetic variation of immune-related genes.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EUROCRIMJUS (2011)

"EU Criminal Justice in Comparative Perspective (Council of Europe, European Union, United States)"

Read More  

AP-GAC (2010)

SYNTHESIS AND SELF-ASSEMBLY OF POLYPHOSPHAZENE (PP) BLOCK COPOLYMERS. DESIGN OF NEW INORGANIC NANOSTRUCTURES DERIVED FROM HIGH CRISTALLINE OR/AND CHIRAL HIGH TUNABLE PP BLOCK

Read More  

DEANDEUPL (2014)

"Distributive Effects and EU Private Law: Justificatory Practices of EU Institutions in a Constitutional, Methodological and Communicative Perspective"

Read More