CHROMSTAB

Mammalian Chromosome Stability

 Coordinatore HELSINGIN YLIOPISTO 

 Organization address address: YLIOPISTONKATU 4
city: HELSINGIN YLIOPISTO
postcode: 14

contact info
Titolo: Ms.
Nome: Katariina
Cognome: Vainio-Mattila
Email: send email
Telefono: 358919000000
Fax: 358919000000

 Nazionalità Coordinatore Finland [FI]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    HELSINGIN YLIOPISTO

 Organization address address: YLIOPISTONKATU 4
city: HELSINGIN YLIOPISTO
postcode: 14

contact info
Titolo: Ms.
Nome: Katariina
Cognome: Vainio-Mattila
Email: send email
Telefono: 358919000000
Fax: 358919000000

FI (HELSINGIN YLIOPISTO) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

patient    molecular    cells    chromosome    proteins    repair    genomic    dna    rearrangements    recombination    cell   

 Obiettivo del progetto (Objective)

'Accurate DNA recombination is critical for preventing tumorigenesis and developmental defects. In normal cells, the DNA damage response helps prevent the propagation cells with aberrant chromosome content. It is known that DNA repair often compromised in tumor cells, but much remains to be discovered about its regulation on the molecular level. For instance, how much cell-to-cell or patient-to-patient variation is there in the type and frequency of DNA rearrangements? What puts certain genomic areas at risk for germline rearrangements? We will address these questions by examining in vivo outcomes of recombination-based DNA repair . Since genomic rearrangements can arise during both mitotic and meiotic cell divisions, and many central proteins have conserved roles in mitosis and meiosis, both systems will be studied. Sensitive PCR methods will be used that enable the detection of rare de novo DNA configurations directly from primary (uncultured) cells. We will complement these assays by immuno-FISH microscopy, to investigate both chromosome dynamics and the localization of proteins of interest within the nucleus. These studies will provide insights into how cells repair broken DNA. This fundamental process is essential for the faithful transmission of DNA into daughter cells. In the long term, understanding the underlying molecular mechanisms could pave the way to safer, more personalized cancer therapies.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ICON-ECO-SPEECH (0)

Iconicity and ecology of languages: new insight

Read More  

SOL (2013)

Sparse Online Learning

Read More  

HYMUCAT (2010)

Innovative organic/inorganic hybrid materials for multifunctional catalysis

Read More