CELLO

From Cells to Organs on Chips: Development of an Integrative Microfluidic Platform

 Coordinatore INSTITUT CURIE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 2˙260˙000 €
 EC contributo 2˙260˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-07-01   -   2018-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT CURIE

 Organization address address: 26, rue d'Ulm
city: PARIS
postcode: 75248

contact info
Titolo: Dr.
Nome: Jean-Louis
Cognome: Viovy
Email: send email
Telefono: +33 1 56 24 67 52
Fax: +33 140 51 06 36

FR (PARIS) hostInstitution 2˙260˙000.00
2    INSTITUT CURIE

 Organization address address: 26, rue d'Ulm
city: PARIS
postcode: 75248

contact info
Titolo: Mrs.
Nome: Corinne
Cognome: Cumin
Email: send email
Telefono: +33 1 56 24 66 20
Fax: +33 1 56 24 66 27

FR (PARIS) hostInstitution 2˙260˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

stimulation    models    platform    functional    construction    arrangement    biology    developmental    resolution    neuron    assemblies    vitro    tissue    cells   

 Obiettivo del progetto (Objective)

'We shall develop a microfluidic and microsystems toolbox allowing the construction and study of complex cellular assemblies (“tissue or organ mimics on chip”), in a highly controlled and parallelized way. This platform will allow the selection of specific cells from one or several populations, their deterministic positioning and/or connection relative to each other, yielding functional assemblies with a degree of complexity, determinism and physiological realism unavailable to current in vitro systems We shall in particular develop “semi-3D” architectures, reproducing the local 3D arrangement of tissues, but presenting at mesoscale a planar and periodic arrangement facilitating high resolution stimulation and recording. This will provide biologists and clinicians with new experimental models able to bridge the gap between current in vitro systems, in which cells can be observed in parallel at high resolution, but lack the highly ordered architecture present in living systems, and in vivo models, in which observation and stimulation means are more limited. This development will follow a functional approach, and gather competences and concepts from micr-nano-systems, surface science, hydrodynamics, soft matter and biology. We shall validate it on three specific applications, the sorting and study of circulating tumour cells for understanding metastases, the creation of “miniguts”, artificial intestinal tissue, for applications in developmental biology and cancerogenesis, and the in vitro construction of active and connected neuron arrays, for studying the molecular mechanisms of Alzheimer, and signal processing by neuron networks. This platform will also open new routes for drug testing, replacing animal models and reducing the health and economic risk of clinical tests, developmental biology , stem cells research. and regenerative medicine.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

YODA (2012)

Topographic signaling and spatial landmarks of key polarized neuro-developmental processes

Read More  

INSTABILITIES (2014)

Instabilities and nonlocal multiscale modelling of materials

Read More  

MELOVISION (2011)

Melanopsin-based vision in health and disease

Read More