CP-AMPAR TRAFFICKING

Molecular mechanisms regulating the trafficking of calcium-permeable and -impermeable AMPA receptors in synaptic plasticity

 Coordinatore UNIVERSITY COLLEGE LONDON 

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Ms.
Nome: Borg-Carbott
Cognome: Greta
Email: send email
Telefono: 442077000000
Fax: 442077000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 168˙256 €
 EC contributo 168˙256 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-07-01   -   2010-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Ms.
Nome: Borg-Carbott
Cognome: Greta
Email: send email
Telefono: 442077000000
Fax: 442077000000

UK (LONDON) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

ampar    cell    proteins    subtype    switch    cp    scs    surface    synaptic    synapses    ci    calcium    expression    cells    ampars    underlie    mechanisms    transmission    trafficking    excitatory    receptors    cellular    plasticity   

 Obiettivo del progetto (Objective)

'AMPA type glutamate receptors (AMPARs) mediate fast excitatory transmission in the CNS. These receptors can be calcium-impermeable (CI AMPARs) or calcium permeable (CP AMPARs). Because insertion or removal of CI AMPARs at synapses is key to the expression of canonical forms of plasticity, such as LTP (long-term potentiation) and LTD (long-term depression), the trafficking of these receptors has been extensively studied. In various regions of the brain, CP AMPARs have been implicated in important aspects of neuronal function, including development, synaptic plasticity and cell death, yet the mechanisms regulating the synaptic expression of CP AMPARs remain unclear. This project seeks to address this issue by examining the differential trafficking of CI- and CP-AMPARs in cerebellar stellate cells (SCs), where excitatory transmission is mediated mainly by CP AMPARs. Notably, these cells exhibit a novel form of synaptic plasticity triggered by calcium entry through CP-AMPARs and expressed as a switch in synaptic receptor subtype, from CP- to CI-AMPARs. We plan to use high-resolution electrophysiology (whole-cell and outside-out patch clamp recording from SCs) combined with imaging (immunocytochemistry and single quantum dot-based tracking of AMPARs at the cell surface) to address the following questions: (1) Are transmembrane AMPAR regulatory proteins (TARPS) involved in AMPAR trafficking in SCs? These proteins underlie membrane delivery and surface trafficking of CI-AMPARs but how they regulate CP-AMPARs is unknown. (2) What cellular mechanisms underlie the activity-dependent switch in AMPAR subtype at SC synapses? Specifically, how are CI-AMPARs excluded from excitatory synapses in the basal condition and what are the regulated steps leading to their incorporation at synaptic sites – exocytosis and/or lateral diffusion? Understanding these cellular mechanisms will provide key insights into the regulation of CP-AMPARs at central synapses.'

Altri progetti dello stesso programma (FP7-PEOPLE)

COUNTERING LBA (2014)

Countering Confounding Heterogeneity in Phylogenetics through Non-Parametric Analyses of Quartet Split Patterns

Read More  

WATECH (2012)

Advanced Treatments for Water Sustainability in Europe and China

Read More  

SEEING WITH SOUNDS (2008)

Neural and behavioral correlates of ‘seeing’ without visual input using auditory-to-visual sensory substitution in blind and sighted: a combined fMRI-TMS study

Read More