CEPODRO

Cell polarization in Drosophila

 Coordinatore INSTITUT CURIE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙159˙000 €
 EC contributo 1˙159˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-09-01   -   2013-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT CURIE

 Organization address address: 26, rue d'Ulm
city: PARIS
postcode: 75248

contact info
Titolo: Mr.
Nome: Yohanns
Cognome: Bellaiche
Email: send email
Telefono: -42346354
Fax: -42346350

FR (PARIS) hostInstitution 0.00
2    INSTITUT CURIE

 Organization address address: 26, rue d'Ulm
city: PARIS
postcode: 75248

contact info
Titolo: Ms.
Nome: Corinne
Cognome: Cumin
Email: send email
Telefono: +33 1 42 34 66 20
Fax: +33 1 42 34 66 27

FR (PARIS) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mechanisms    division    cell    polarization    morphogenesis    fundamental    asymmetric    epithelial    protein    innovative    polarity    tissues    developmental    drosophila    biology   

 Obiettivo del progetto (Objective)

'Cell polarity is fundamental to many aspects of cell and developmental biology and it is implicated in differentiation, proliferation and morphogenesis in both unicellular and multi-cellular organisms. We study the mechanisms that regulate cell polarity during both asymmetric cell division and epithelial cell polarization in Drosophila. To understand these fundamental processes, we are currently using two complementary approaches. Firstly, we are coupling genetic tools to state of the art time-lapse microscopy to genetically dissect the mechanisms of cortical cell polarization and mitotic spindle orientation. Secondly, we are introducing two innovative inter-disciplinary methodologies into the fields of cell and developmental biology: 1) single molecule imaging during asymmetric cell division, to unravel the mechanism of polarized protein distribution within the cell; 2) multi-scale tensor analysis of epithelial tissues to describe and understand how epithelial tissues grow, acquire and maintain their shape and organization during development. Using both conventional and innovative methodologies, our goals over the next four years are to better understand how molecules and protein complexes move and are activated at different locations within the cell and how cell polarization impacts on cell identities and on epithelial tissue growth and morphogenesis. Since the mechanisms underlying cell polarization are conserved throughout evolution, the proposed experiments will improve our understanding of these processes not only in Drosophila, but in all animals.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

EXTENDFRET (2012)

Extended fluorescence resonance energy transfer with plasmonic nanocircuits

Read More  

ISOSYC (2014)

Initial Solar System Composition and Early Planetary Differentiation

Read More  

HOLOBHC (2014)

Holography for realistic black holes and cosmologies

Read More