SIMPLE-FEEDBACK

Fedback in low mass galaxies at z>1 : a SIMPLE study

 Coordinatore UNIVERSITE PAUL SABATIER TOULOUSE III 

 Organization address address: ROUTE DE NARBONNE 118
city: TOULOUSE CEDEX 9
postcode: 31062

contact info
Titolo: Ms.
Nome: Anne
Cognome: Molinié
Email: send email
Telefono: 33561556604
Fax: 33561557313

 Nazionalità Coordinatore France [FR]
 Totale costo 334˙095 €
 EC contributo 334˙095 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IOF-2008
 Funding Scheme MC-IOF
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-10-01   -   2012-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE PAUL SABATIER TOULOUSE III

 Organization address address: ROUTE DE NARBONNE 118
city: TOULOUSE CEDEX 9
postcode: 31062

contact info
Titolo: Ms.
Nome: Anne
Cognome: Molinié
Email: send email
Telefono: 33561556604
Fax: 33561557313

FR (TOULOUSE CEDEX 9) coordinator 334˙095.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

quasar    surveys    along    kinematics    sight    radial    feedback    outgoing    lines    super    muse    host    galaxy    winds    mass    spectra    gas    line    galaxies   

 Obiettivo del progetto (Objective)

'Current observations and models indicate that supernova feedback processes are important in shaping many properties of galaxies. In spite of rapid progress, our current knowledge of the physical properties of super-winds is still in its infancy: it comes mainly from few nearby galaxies or from bright ultra-luminous infra-red galaxies where the kinematics of the winds are inferred from the blue-shifted sodium absorption of the cold entrained gas against the galaxy continuum, i.e. along radial sight lines. We are studying low-mass galaxies "caught in the act" of producing super-winds half-way across the universe (at z=1) using the MgII resonance line in QSO spectra. A unique aspect of our project is that we are combining the 2D spatially-resolved kinematics of starbursts with the 1D kinematics of the absorbing gas seen along the quasar sight line. Our scientific goals, however, extend much beyond our sample. While at the outgoing host, the University of California, Santa Barbara (UCSB), working with Prof. C. Martin, we aim to combine our results on intervening sight-lines with upcoming surveys on radial sight-lines in order to put both in a unified context. This will give us constraints on the radial properties of outflows. In addition, given that our sample nicely fills unexplored mass and SFR ranges, we will quantify how the wind properties vary over a much wider range of masses and star-formation rates. At the returning host, the Laboratoire Astrophysique de Toulouse-Tarbes (LATT), the fellow will prepare, design and exploit the next-generation of feedback surveys using the wide field integral field unit, MUSE, which will provide unprecedented 3-dimensional data sets on thousands of faint emission line galaxies, and spectra of hundreds of galaxy-galaxy and galaxy-quasar pairs. In other words, the skills acquired at the outgoing host will be very valuable to exploit the MUSE instrument, which is one major training objective.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NANOTRAC (2013)

Tracing the Intracellular Fate of Anticancer Nanomedicines

Read More  

DDR IN LYMPHOCYTES (2014)

Identifying Functional Proteins at DNA Breaks with Quantitative Proteomics in Primary Lymphocytes

Read More  

KON-TIKIGENET (2014)

Kon-Tiki gene network for CNS regeneration

Read More