NAVICHEB

NEW ADVANCED VACCINES IN CHRONIC HEPATITIS B

 Coordinatore FUNDACION PARA LA INVESTIGACION MEDICA APLICADA FIMA 

 Organization address address: AVENIDA DE PIO XII 55
city: PAMPLONA
postcode: 31008

contact info
Titolo: Ms.
Nome: Ana
Cognome: Iglesias Garcia
Email: send email
Telefono: 34948194700

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACION PARA LA INVESTIGACION MEDICA APLICADA FIMA

 Organization address address: AVENIDA DE PIO XII 55
city: PAMPLONA
postcode: 31008

contact info
Titolo: Ms.
Nome: Ana
Cognome: Iglesias Garcia
Email: send email
Telefono: 34948194700

ES (PAMPLONA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

hbv    strategies    despite    hepatitis    interfere    people    suppress    whv    genetic    protein    chronic    replication    whx    vaccines    woodchuck    core    billion    model    infected    persistence    problem    hcc    wild    virus    health    worldwide    efficient    infection       reverse    recombinant   

 Obiettivo del progetto (Objective)

'Despite effective vaccines, hepatitis B virus (HBV) infection remains a major health problem with 2 billion people infected worldwide. Among them, 350 million are chronically infected, a major risk factor for development of hepatocellular carcinoma (HCC). A new and efficient treatment against chronic infection and HCC is strongly needed, and therefore it is important to understand HBV replication and persistence. In the absence of a good model, woodchuck infection with woodchuck hepatitis virus (WHV) is used as the preferred system to study disease and by homology, HBV nature. In the present proposal we intent to establish a robust WHV reverse genetic system to study the virus replication and pathogenesis. By utilizing this WHV reverse genetic system, we plan to introduce two new strategies to generate virus-attenuated vaccines that could infect and interfere with wild type virus replication. WHV core is a structural protein required for virus replication and growth. We are proposing to construct a core deficient recombinant WHV that could replicate in wild type WHV infected cells, interfering with wild type infection. A second strategy focuses on Hepatitis B virus X (HBx) and woodchuck hepatitis virus X (WHx) multifunctional proteins, which are required for optimal HBV and WHV replication and development of WHV derived HCC. We propose to create recombinant WHV with a mutant WHx protein that will interfere with full-length protein activities if they are co-expressed. As an initial approach to study virus replication, we will utilize woodchuck hepatocyte xenograft transplants in RAG-1 transgenic mice. Finally, woodchuck animal model will be challenged to test the efficacy of recombinant viruses replication and interference with chronic infection and suppress HBV derived HCC. Our ultimate goal is to develop novel effective molecular therapeutic tools that could be combined with other HBV/WHV antiviral strategies to suppress chronic HBV infection and HBV derived HCC.'

Introduzione (Teaser)

Despite effective vaccines, hepatitis B virus (HBV) infection still poses a major health problem with two billion people infected worldwide. An EU project is widening the knowledge base on HBV replication and persistence to develop more efficient treatments.

Altri progetti dello stesso programma (FP7-PEOPLE)

MLPHENOM (2011)

Machine learning for quantitative modelling of structured phenotypes

Read More  

MWSPEC (2013)

New trends in microwave spectroscopy

Read More  

NIRVANA (2014)

Synthesis of pyrene-fused polyazaacenes for NIR applications

Read More